cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A207683 Number of 3 X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

6, 36, 72, 164, 336, 702, 1488, 3164, 6612, 13916, 29532, 62032, 130548, 275904, 581196, 1223824, 2581620, 5442424, 11466060, 24172016, 50959908, 107395128, 226366524, 477188096, 1005780564, 2119935656, 4468615788, 9419000656
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Row 3 of A207682.

Examples

			Some solutions for n=4:
..0..1..1..1....1..1..0..0....0..1..1..1....1..0..0..1....0..0..1..0
..0..1..0..0....1..0..0..1....1..1..1..0....0..0..1..1....0..1..0..0
..0..0..1..0....0..1..0..0....1..0..0..1....0..0..1..0....0..0..1..0
		

Crossrefs

Cf. A207682.

Formula

Empirical: a(n) = a(n-2) + 6*a(n-3) + 4*a(n-4) - 6*a(n-6) for n>8.
Empirical g.f.: 2*x*(3 + 18*x + 33*x^2 + 46*x^3 + 12*x^4 - 19*x^5 - 42*x^6 + 3*x^7) / (1 - x^2 - 6*x^3 - 4*x^4 + 6*x^6). - Colin Barker, Mar 05 2018

A207678 Number of n X 4 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

9, 81, 164, 436, 1030, 2032, 4174, 8266, 16060, 30670, 57888, 109188, 202628, 375252, 692182, 1267634, 2319308, 4224978, 7679364, 13935174, 25221442, 45611766, 82350810, 148518712, 267668550, 481894280, 867169926, 1559501878, 2803131788
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 4 of A207682.

Examples

			Some solutions for n=4
..1..1..0..0....1..0..0..1....1..1..1..0....1..0..0..1....1..0..0..1
..0..1..1..1....0..1..0..0....0..0..1..1....1..1..1..1....0..1..1..0
..1..0..0..1....1..0..0..1....0..1..0..0....0..0..1..0....1..1..0..0
..1..1..0..0....0..1..0..0....0..0..1..1....0..1..0..0....0..0..1..0
		

Crossrefs

Cf. A207682.

Formula

Empirical: a(n) = 2*a(n-1) +2*a(n-2) +a(n-3) -12*a(n-4) -3*a(n-5) +27*a(n-7) +8*a(n-8) -2*a(n-9) -33*a(n-10) -15*a(n-11) +19*a(n-13) +23*a(n-14) -4*a(n-15) +a(n-16) -19*a(n-17) +4*a(n-18) -4*a(n-19) +7*a(n-20) -a(n-21) +a(n-22) -a(n-23) for n>28.

A207679 Number of nX5 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

13, 169, 336, 964, 2310, 4728, 9450, 18940, 37656, 70916, 136496, 259444, 485812, 917072, 1704676, 3183548, 5913532, 10932836, 20269368, 37337548, 68861592, 126762078, 232800870, 427869304, 784395562, 1438074950, 2634363880
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 5 of A207682

Examples

			Some solutions for n=4
..1..1..0..0..1....0..0..1..1..0....1..0..0..1..1....0..1..1..1..0
..1..1..1..1..1....1..1..1..0..0....0..0..1..0..0....0..1..0..0..1
..0..0..1..0..0....1..0..0..1..0....1..0..0..1..0....0..0..1..0..0
..0..1..0..0..1....0..0..1..0..0....1..0..0..1..0....0..1..1..0..0
		

Formula

Empirical: a(n) = -a(n-1) +3*a(n-2) +11*a(n-3) +6*a(n-4) -16*a(n-5) -43*a(n-6) -28*a(n-7) +30*a(n-8) +89*a(n-9) +66*a(n-10) -28*a(n-11) -109*a(n-12) -93*a(n-13) +17*a(n-14) +89*a(n-15) +82*a(n-16) -5*a(n-17) -55*a(n-18) -44*a(n-19) -2*a(n-20) +26*a(n-21) +14*a(n-22) +a(n-23) -8*a(n-24) -2*a(n-25) +a(n-27) for n>32

A207680 Number of nX6 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

19, 361, 702, 2132, 5704, 11994, 25076, 52632, 109811, 215506, 431270, 856818, 1671738, 3290063, 6359426, 12365486, 23939738, 45966515, 88735852, 170028536, 325975917, 624553353, 1192281784, 2279867642, 4348061061, 8290055552
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Column 6 of A207682

Examples

			Some solutions for n=4
..0..0..1..0..0..1....1..1..1..1..1..1....0..1..1..0..0..1....0..0..1..1..1..1
..1..0..0..1..1..1....0..1..0..0..1..0....1..1..0..0..1..0....1..0..0..1..0..0
..0..0..1..1..0..0....1..0..0..1..0..0....0..0..1..0..0..1....0..0..1..0..0..1
..0..0..1..0..0..1....1..0..0..1..1..0....0..0..1..0..0..1....1..0..0..1..0..0
		

Formula

Empirical: a(n) = a(n-1) +4*a(n-2) +10*a(n-3) -17*a(n-4) -36*a(n-5) -56*a(n-6) +93*a(n-7) +172*a(n-8) +247*a(n-9) -280*a(n-10) -538*a(n-11) -793*a(n-12) +506*a(n-13) +1147*a(n-14) +1793*a(n-15) -488*a(n-16) -1764*a(n-17) -2886*a(n-18) -9*a(n-19) +2098*a(n-20) +3325*a(n-21) +837*a(n-22) -2053*a(n-23) -2784*a(n-24) -1426*a(n-25) +1663*a(n-26) +1753*a(n-27) +1358*a(n-28) -1076*a(n-29) -863*a(n-30) -854*a(n-31) +547*a(n-32) +339*a(n-33) +366*a(n-34) -217*a(n-35) -103*a(n-36) -102*a(n-37) +64*a(n-38) +21*a(n-39) +16*a(n-40) -12*a(n-41) -2*a(n-42) -a(n-43) +a(n-44) for n>51

A207681 Number of n X 7 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

28, 784, 1488, 4846, 14090, 29982, 65564, 139730, 299064, 620638, 1251316, 2595908, 5260942, 10606968, 21437670, 42824016, 86024822, 171420110, 340644210, 678395210, 1341990252, 2658199478, 5253155166, 10354111212, 20425614060
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 7 of A207682.

Examples

			Some solutions for n=4
..1..0..0..1..1..1..1....0..0..1..1..1..1..1....0..1..0..0..1..1..0
..0..1..1..1..1..0..0....0..1..1..0..0..1..0....0..0..1..1..1..0..0
..0..0..1..0..0..1..1....0..1..0..0..1..0..0....0..1..1..0..0..1..0
..0..1..0..0..1..0..0....0..0..1..0..0..1..0....0..1..0..0..1..0..0
		

Crossrefs

Cf. A207682.

Formula

Empirical: a(n) = a(n-1) +4*a(n-2) +12*a(n-3) -22*a(n-4) -40*a(n-5) -69*a(n-6) +158*a(n-7) +209*a(n-8) +288*a(n-9) -681*a(n-10) -783*a(n-11) -870*a(n-12) +2056*a(n-13) +2292*a(n-14) +1834*a(n-15) -4575*a(n-16) -5470*a(n-17) -2549*a(n-18) +7882*a(n-19) +10555*a(n-20) +1934*a(n-21) -11218*a(n-22) -15926*a(n-23) +220*a(n-24) +14043*a(n-25) +18249*a(n-26) -2662*a(n-27) -15584*a(n-28) -15641*a(n-29) +4007*a(n-30) +14677*a(n-31) +9830*a(n-32) -3939*a(n-33) -11106*a(n-34) -4248*a(n-35) +2891*a(n-36) +6465*a(n-37) +985*a(n-38) -1563*a(n-39) -2801*a(n-40) +99*a(n-41) +589*a(n-42) +877*a(n-43) -170*a(n-44) -144*a(n-45) -191*a(n-46) +63*a(n-47) +20*a(n-48) +27*a(n-49) -12*a(n-50) -a(n-51) -2*a(n-52) +a(n-53) for n>60.

A207684 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

9, 81, 166, 436, 964, 2132, 4846, 11301, 25496, 57407, 131250, 299913, 680860, 1542076, 3516426, 8019977, 18194846, 41334779, 94226716, 214384000, 486836482, 1107706812, 2522185912, 5733889814, 13035303238, 29665346161, 67490142684
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 4 of A207682

Examples

			Some solutions for n=4
..1..1..0..0....1..1..0..0....1..0..0..1....1..0..0..1....0..1..1..0
..1..0..0..1....0..1..1..1....0..1..1..0....1..1..1..0....1..1..0..0
..0..1..0..0....1..0..0..1....0..1..0..0....0..1..1..1....0..0..1..0
..1..1..0..0....1..1..0..0....0..0..1..0....1..0..0..1....1..1..1..0
		

Formula

Empirical: a(n) = 12*a(n-3) +12*a(n-4) +4*a(n-5) -54*a(n-6) -70*a(n-7) -34*a(n-8) +148*a(n-9) +164*a(n-10) +54*a(n-11) -237*a(n-12) -184*a(n-13) -12*a(n-14) +234*a(n-15) +87*a(n-16) -22*a(n-17) -126*a(n-18) -36*a(n-19) +19*a(n-20) +32*a(n-21) +14*a(n-22) -2*a(n-24) for n>26

A207685 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

13, 169, 360, 1030, 2310, 5704, 14090, 34245, 81936, 201951, 490844, 1183972, 2888722, 7041194, 17067104, 41434930, 100989744, 245384870, 595577764, 1448769445, 3524256548, 8560594095, 20802381058, 50596076707, 122988659982
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 5 of A207682

Examples

			Some solutions for n=4
..0..0..1..0....0..1..0..0....1..1..0..0....0..0..1..0....0..0..1..0
..1..1..0..0....0..1..1..1....0..1..1..0....0..1..1..1....0..1..0..0
..1..1..1..0....0..0..1..0....0..0..1..0....0..1..0..0....0..1..1..0
..0..0..1..0....0..1..0..0....0..1..0..0....0..0..1..1....0..0..1..0
..1..1..0..0....0..0..1..0....0..0..1..0....0..0..1..0....0..1..0..0
		

Formula

Empirical: a(n) = 16*a(n-3) +18*a(n-4) +4*a(n-5) -102*a(n-6) -154*a(n-7) -84*a(n-8) +386*a(n-9) +535*a(n-10) +320*a(n-11) -963*a(n-12) -846*a(n-13) -237*a(n-14) +1978*a(n-15) -46*a(n-16) -1602*a(n-17) -2347*a(n-18) +2876*a(n-19) +3441*a(n-20) +210*a(n-21) -4150*a(n-22) -3538*a(n-23) +3295*a(n-24) +3502*a(n-25) +1931*a(n-26) -4582*a(n-27) -1827*a(n-28) -1482*a(n-29) +3608*a(n-30) -524*a(n-31) +1647*a(n-32) -1776*a(n-33) +1009*a(n-34) -662*a(n-35) +340*a(n-36) -342*a(n-37) +86*a(n-38) +8*a(n-39) +46*a(n-40) +3*a(n-42) for n>44

A207686 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

18, 324, 660, 2032, 4728, 11994, 29982, 77141, 193184, 485658, 1213580, 3090430, 7754424, 19478100, 49010084, 123869662, 311515934, 782045058, 1972950126, 4972883946, 12497401442, 31449373036, 79304725202, 199577343966
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 6 of A207682

Examples

			Some solutions for n=4
..1..0..0..1....0..1..0..0....1..0..0..1....1..1..1..1....0..1..0..0
..0..1..1..0....0..1..1..0....1..1..1..1....1..1..0..0....0..0..1..0
..1..1..0..0....0..0..1..0....0..0..1..0....0..0..1..1....0..1..0..0
..0..0..1..0....0..1..0..0....0..1..0..0....1..0..0..1....0..1..1..0
..0..1..1..0....0..0..1..0....0..1..1..0....0..0..1..0....0..0..1..0
..0..1..0..0....0..0..1..0....0..0..1..0....1..0..0..1....0..1..0..0
		

Formula

Empirical: a(n) = 16*a(n-3) +25*a(n-4) +4*a(n-5) -98*a(n-6) -234*a(n-7) -159*a(n-8) +340*a(n-9) +928*a(n-10) +892*a(n-11) -875*a(n-12) -1506*a(n-13) -2035*a(n-14) +3226*a(n-15) -2346*a(n-16) +1152*a(n-17) -43*a(n-18) +16260*a(n-19) -19321*a(n-20) -39390*a(n-21) -10869*a(n-22) +83214*a(n-23) +110923*a(n-24) -32942*a(n-25) -118675*a(n-26) -208716*a(n-27) +112834*a(n-28) +157576*a(n-29) +235815*a(n-30) -383014*a(n-31) -129416*a(n-32) -167256*a(n-33) +702566*a(n-34) +41228*a(n-35) +292854*a(n-36) -833688*a(n-37) -67215*a(n-38) -378998*a(n-39) +539836*a(n-40) +97752*a(n-41) +263889*a(n-42) -84830*a(n-43) -1390*a(n-44) -99950*a(n-45) -12152*a(n-46) -107340*a(n-47) +13773*a(n-48) -76994*a(n-49) +69895*a(n-50) +34412*a(n-51) +98890*a(n-52) +21902*a(n-53) -42482*a(n-54) -69658*a(n-55) -40323*a(n-56) +13658*a(n-57) +27149*a(n-58) +14106*a(n-59) -1443*a(n-60) -7676*a(n-61) -2105*a(n-62) +14*a(n-63) +729*a(n-64) +220*a(n-65) -110*a(n-66) for n>72

A207687 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

25, 625, 1292, 4174, 9450, 25076, 65564, 171382, 433468, 1150747, 2968284, 7722348, 19756486, 52194634, 134386810, 348854340, 903166514, 2358439491, 6101183894, 15824652924, 41067569740, 106834907856, 276798237718, 718012247867
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 7 of A207682

Examples

			Some solutions for n=4
..0..1..1..0....0..1..0..0....1..1..0..0....0..0..1..0....1..0..0..1
..1..0..0..1....0..1..1..0....0..1..1..1....0..1..0..0....0..1..0..0
..1..1..1..1....0..0..1..0....1..0..0..1....0..1..1..0....1..0..0..1
..0..0..1..0....0..1..0..0....1..1..1..0....0..0..1..0....0..1..0..0
..1..1..0..0....0..0..1..0....0..0..1..0....0..1..0..0....1..0..0..1
..0..0..1..0....0..1..1..0....1..1..0..0....0..1..1..0....0..1..0..0
..0..0..1..0....0..1..0..0....0..1..0..0....0..0..1..0....1..1..0..0
		

A207677 Number of n X n 0..1 arrays avoiding 0 0 0 and 1 0 1 horizontally and 0 0 1 and 1 1 1 vertically.

Original entry on oeis.org

2, 16, 72, 436, 2310, 11994, 65564, 379618, 2306234, 15546084, 105736196, 882008157, 7460256028, 79554888778, 842718226878, 10871887456045, 151150820925264, 2491064356652975, 43353562677488606, 900988265135221518
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Diagonal of A207682

Examples

			Some solutions for n=4
..0..1..1..0....1..1..0..0....0..1..1..0....0..1..0..0....1..0..0..1
..0..1..0..0....0..0..1..0....1..0..0..1....0..0..1..0....1..1..1..0
..0..0..1..0....0..1..1..0....1..1..1..1....0..1..0..0....0..1..1..1
..0..1..1..0....0..1..0..0....0..0..1..0....0..0..1..0....1..0..0..1
		
Showing 1-10 of 10 results.