cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A207704 Number of 3Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

6, 36, 102, 289, 1071, 3969, 13230, 44100, 153090, 531441, 1815939, 6205081, 21332924, 73342096, 251550372, 862773129, 2961885201, 10168100569, 34894442176, 119749218304, 411007092416, 1410671672089, 4841491994817
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 3 of A207703

Examples

			Some solutions for n=4
..0..0..1..1....1..1..1..1....1..0..1..1....0..1..1..1....1..1..1..1
..1..1..1..1....0..0..1..1....0..0..1..1....1..0..0..1....1..1..0..1
..1..1..1..1....0..1..1..1....0..0..1..1....0..0..1..1....1..1..1..1
		

Formula

Empirical: a(n) = 2*a(n-1) +10*a(n-3) +25*a(n-4) -2*a(n-5) +4*a(n-6) -28*a(n-7) -68*a(n-8) -2*a(n-9) +4*a(n-10) +10*a(n-11) +25*a(n-12) +2*a(n-13) -a(n-16)

A207699 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

2, 16, 102, 729, 8151, 105625, 1369900, 19891600, 334808748, 6181890625, 122401625127, 2624869821025, 60940432893132, 1515981414587236, 40169735443014974, 1131549414709903225, 33790458968920700067
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Diagonal of A207703

Examples

			Some solutions for n=4
..0..1..1..1....1..0..0..1....1..1..1..1....0..0..1..1....1..0..1..1
..0..0..1..1....1..0..0..1....1..1..0..0....1..0..1..1....1..1..0..0
..0..1..1..1....1..0..0..1....1..1..1..1....0..0..1..1....1..1..1..0
..0..1..1..1....1..0..0..1....1..1..0..0....0..0..1..1....1..1..1..0
		

A207700 Number of n X 5 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

15, 225, 1071, 3321, 8151, 17225, 32775, 57681, 95551, 150801, 228735, 335625, 478791, 666681, 908951, 1216545, 1601775, 2078401, 2661711, 3368601, 4217655, 5229225, 6425511, 7830641, 9470751, 11374065, 13570975, 16094121, 18978471
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 5 of A207703.

Examples

			Some solutions for n=4:
..1..0..0..1..1....0..0..1..1..1....0..0..1..1..0....1..1..0..1..1
..0..1..1..0..1....0..1..1..0..1....0..0..1..1..0....1..1..0..1..1
..1..1..1..0..1....0..0..1..1..1....0..0..1..1..0....1..1..0..1..1
..1..1..1..0..1....0..0..1..1..1....0..0..1..1..0....1..1..0..1..1
		

Crossrefs

Cf. A207703.

Formula

Empirical: a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 6*a(n-5) - a(n-6).
Conjectures from Colin Barker, Jun 25 2018: (Start)
G.f.: x*(15 + 135*x - 54*x^2 - 30*x^3 + 15*x^4 - x^5) / (1 - x)^6.
a(n) = (3 - 10*n - 15*n^2 + 44*n^3 + 21*n^4 + 2*n^5) / 3.
(End)

A207701 Number of n X 6 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

25, 625, 3969, 15129, 43681, 105625, 225625, 439569, 797449, 1366561, 2235025, 3515625, 5349969, 7912969, 11417641, 16120225, 22325625, 30393169, 40742689, 53860921, 70308225, 90725625, 115842169, 146482609, 183575401, 228161025
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 6 of A207703.

Examples

			Some solutions for n=4:
..1..1..1..1..1..0....0..0..1..1..1..1....1..1..1..0..0..1....0..1..1..1..0..0
..0..0..1..1..0..0....0..1..1..1..0..1....0..1..1..1..1..0....1..0..1..1..1..0
..0..0..1..1..1..0....0..1..1..1..1..1....0..1..1..1..1..0....1..1..1..1..1..0
..0..0..1..1..1..0....0..1..1..1..0..1....0..1..1..1..1..0....1..1..1..1..1..0
		

Crossrefs

Cf. A207703.

Formula

Empirical: a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7).
Conjectures from Colin Barker, Jun 25 2018: (Start)
G.f.: x*(25 + 450*x + 119*x^2 - 404*x^3 + 127*x^4 + 2*x^5 + x^6) / (1 - x)^7.
a(n) = (-3 + n + 15*n^2 + 2*n^3)^2 / 9.
(End)

A207702 Number of n X 7 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

40, 1600, 13230, 61254, 206910, 571350, 1369900, 2956980, 5883084, 10965220, 19372210, 32726250, 53222130, 83765514, 128131680, 191146120, 278888400, 398920680, 560542294, 775071790, 1056157830, 1420120350, 1886323380
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 7 of A207703.

Examples

			Some solutions for n=4:
..0..1..1..1..0..0..1....0..1..1..0..0..1..1....1..1..1..1..1..1..1
..1..0..0..1..1..0..0....0..0..1..1..1..0..1....0..1..1..1..1..0..1
..0..1..1..1..0..0..1....0..1..1..0..0..1..1....1..1..1..1..1..1..1
..0..1..1..1..1..0..0....0..0..1..1..0..1..1....0..1..1..1..1..0..1
		

Crossrefs

Cf. A207703.

Formula

Empirical: a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8).
Conjectures from Colin Barker, Jun 25 2018: (Start)
G.f.: 2*x*(20 + 640*x + 775*x^2 - 1013*x^3 + 259*x^4 + 31*x^5 - 12*x^6) / (1 - x)^8.
a(n) = (n*(162 - 327*n - 881*n^2 + 1296*n^3 + 997*n^4 + 183*n^5 + 10*n^6)) / 36.
(End)

A207705 Number of 4Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

8, 64, 216, 729, 3321, 15129, 61254, 248004, 1050282, 4447881, 18510693, 77035729, 322765398, 1352327076, 5651244450, 23616005625, 98788590675, 413244551281, 1727977178912, 7225516033024, 30217971381472, 126375166872241
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 4 of A207703

Examples

			Some solutions for n=4
..1..0..1..1....0..0..1..1....1..1..1..0....1..1..0..1....0..1..1..1
..1..1..1..1....0..0..1..1....0..1..1..0....1..0..1..1....0..0..1..1
..1..1..1..1....0..0..1..1....0..1..1..0....1..0..0..1....0..1..1..1
..1..1..1..1....0..0..1..1....0..1..1..0....1..0..0..1....0..1..1..1
		

Formula

Empirical: a(n) = 3*a(n-1) +14*a(n-3) +48*a(n-4) -65*a(n-5) -41*a(n-6) -103*a(n-7) -351*a(n-8) +353*a(n-9) +286*a(n-10) +103*a(n-11) +629*a(n-12) -480*a(n-13) -280*a(n-14) -16*a(n-15) -367*a(n-16) +216*a(n-17) +46*a(n-18) +2*a(n-19) +53*a(n-20) -28*a(n-21) -2*a(n-22) -2*a(n-24) +a(n-25)

A207706 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

10, 100, 390, 1521, 8151, 43681, 206910, 980100, 4863870, 24137569, 117661437, 573554601, 2815061256, 13816591936, 67635405320, 331090914025, 1622397552875, 7950003180625, 38941246190550, 190744660149156, 934456590661998
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 5 of A207703

Examples

			Some solutions for n=4
..1..1..1..1....1..1..0..0....0..0..1..1....1..1..1..0....0..0..1..1
..1..1..0..0....1..1..1..0....0..1..1..0....0..1..1..0....0..0..1..1
..1..1..1..1....1..1..1..0....0..0..1..1....1..1..1..0....0..0..1..1
..1..1..0..0....1..1..1..0....0..0..1..1....1..1..1..0....0..0..1..1
..1..1..0..1....1..1..1..0....0..0..1..1....1..1..1..0....0..0..1..1
		

Formula

Empirical: a(n) = 3*a(n-1) +28*a(n-3) +106*a(n-4) -59*a(n-5) +7*a(n-6) -592*a(n-7) -1897*a(n-8) +226*a(n-9) -290*a(n-10) +3421*a(n-11) +10592*a(n-12) -320*a(n-13) +453*a(n-14) -7096*a(n-15) -21514*a(n-16) +149*a(n-17) +669*a(n-18) +5807*a(n-19) +16981*a(n-20) +326*a(n-21) -438*a(n-22) -1964*a(n-23) -5582*a(n-24) -245*a(n-25) +68*a(n-26) +256*a(n-27) +802*a(n-28) +41*a(n-29) -4*a(n-30) -11*a(n-31) -49*a(n-32) -2*a(n-33) +a(n-36)

A207707 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

12, 144, 636, 2809, 17225, 105625, 571350, 3090564, 17518470, 99301225, 552967815, 3079251081, 17262695190, 96776988100, 541164386750, 3026121180625, 16938024328125, 94806734765625, 530464911052500, 2968069964160016
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 6 of A207703

Examples

			Some solutions for n=4
..0..0..1..1....1..0..0..1....1..0..0..1....1..0..0..1....0..0..1..1
..1..1..0..0....0..1..1..0....0..1..1..1....1..1..0..1....0..1..1..0
..0..0..1..1....1..1..0..1....0..1..1..1....1..0..0..1....0..1..1..1
..1..0..0..1....0..1..1..0....0..1..1..1....1..1..0..1....0..1..1..0
..0..0..1..1....1..1..1..0....0..1..1..1....1..1..0..1....0..1..1..1
..1..0..1..1....0..1..1..0....0..1..1..1....1..1..0..1....0..1..1..0
		

Formula

Empirical: a(n) = 4*a(n-1) +34*a(n-3) +161*a(n-4) -304*a(n-5) -204*a(n-6) -1251*a(n-7) -5160*a(n-8) +6981*a(n-9) +6282*a(n-10) +13350*a(n-11) +58402*a(n-12) -65494*a(n-13) -61813*a(n-14) -51552*a(n-15) -279939*a(n-16) +272064*a(n-17) +231886*a(n-18) +79582*a(n-19) +630877*a(n-20) -535169*a(n-21) -359358*a(n-22) -63604*a(n-23) -717591*a(n-24) +534618*a(n-25) +255654*a(n-26) +34999*a(n-27) +423821*a(n-28) -280955*a(n-29) -93514*a(n-30) -10508*a(n-31) -135019*a(n-32) +81624*a(n-33) +18556*a(n-34) +1525*a(n-35) +23768*a(n-36) -13393*a(n-37) -1976*a(n-38) -96*a(n-39) -2276*a(n-40) +1216*a(n-41) +103*a(n-42) +2*a(n-43) +109*a(n-44) -56*a(n-45) -2*a(n-46) -2*a(n-48) +a(n-49)

A207708 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 0 1 and 1 1 0 vertically.

Original entry on oeis.org

14, 196, 966, 4761, 32775, 225625, 1369900, 8317456, 52895444, 336392281, 2102483853, 13140724689, 82666212354, 520040015044, 3263532374278, 20480430831961, 128643137927197, 808042422131569, 5073797510995256
Offset: 1

Views

Author

R. H. Hardin Feb 19 2012

Keywords

Comments

Row 7 of A207703

Examples

			Some solutions for n=4
..0..1..1..1....1..1..1..0....0..0..1..1....0..0..1..1....1..1..0..0
..0..1..1..0....0..1..1..0....1..1..1..0....1..0..1..1....1..1..1..1
..0..1..1..0....0..1..1..0....0..1..1..0....0..0..1..1....1..1..1..1
..0..1..1..0....0..1..1..0....1..1..1..0....0..0..1..1....1..1..1..1
..0..1..1..0....0..1..1..0....1..1..1..0....0..0..1..1....1..1..1..1
..0..1..1..0....0..1..1..0....1..1..1..0....0..0..1..1....1..1..1..1
..0..1..1..0....0..1..1..0....1..1..1..0....0..0..1..1....1..1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) +57*a(n-3) +284*a(n-4) -314*a(n-5) -39*a(n-6) -4155*a(n-7) -16616*a(n-8) +6874*a(n-9) -2657*a(n-10) +97060*a(n-11) +359797*a(n-12) -66778*a(n-13) +77045*a(n-14) -1019094*a(n-15) -3617126*a(n-16) +385281*a(n-17) -504943*a(n-18) +5451396*a(n-19) +18594594*a(n-20) -1422920*a(n-21) +811498*a(n-22) -15736153*a(n-23) -51158769*a(n-24) +2752369*a(n-25) +516925*a(n-26) +25909668*a(n-27) +79811349*a(n-28) -2261639*a(n-29) -2183637*a(n-30) -25220973*a(n-31) -74042440*a(n-32) +178375*a(n-33) +1988830*a(n-34) +14786834*a(n-35) +42245216*a(n-36) +785427*a(n-37) -907260*a(n-38) -5336110*a(n-39) -15218216*a(n-40) -507838*a(n-41) +243745*a(n-42) +1199159*a(n-43) +3512433*a(n-44) +149316*a(n-45) -40022*a(n-46) -166404*a(n-47) -519313*a(n-48) -24231*a(n-49) +3857*a(n-50) +13706*a(n-51) +48268*a(n-52) +2210*a(n-53) -196*a(n-54) -607*a(n-55) -2690*a(n-56) -105*a(n-57) +4*a(n-58) +11*a(n-59) +81*a(n-60) +2*a(n-61) -a(n-64)
Showing 1-9 of 9 results.