cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207709 Floor((H(n) + exp(H(n))*log(H(n)))/sigma(n)), where H(n) is the harmonic number sum_{i=1..n} 1/i.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 2
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 19 2012

Keywords

Comments

An assertion equivalent to the Riemann hypothesis is: a(n) > 0 for every n >= 1.
a(12*n) = 1 for all 1<=n<=43312.
For n >= 1, a(2^(10^n)) so far appears to equal floor(n*(exp(1)-2/3) - 1/3).
There exist integers n such that (H(n) + exp(H(n))*log(H(n)))/sigma(n) < 1.01 (i.e., n = 100630609505753353981293837481689271234222794240000*1087#). See A215640 for information on how to generate these numbers. - Arkadiusz Wesolowski, Aug 19 2012

Examples

			a(11) = 2 because (H(11) + exp(1)^H(11)*log(H(11)))/sigma(11) = 2.1387006307....
		

Crossrefs

Programs

  • Mathematica
    lst = {}; Do[h = NIntegrate[(1 - x^n)/(1 - x), {x, 0, 1}]; AppendTo[lst, Floor[(h + Exp@h*Log@h)/DivisorSigma[1, n]]], {n, 530}]; lst