cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207724 Number of n X 3 0..1 arrays avoiding 0 0 0 and 0 1 0 horizontally and 0 1 1 and 1 0 1 vertically.

Original entry on oeis.org

6, 36, 78, 189, 490, 1113, 2449, 5474, 12036, 26100, 56595, 122472, 264061, 568695, 1224190, 2633000, 5660226, 12165489, 26141850, 56165805, 120662377, 259206930, 556801480, 1196027864, 2569059663, 5518244160, 11852866905, 25459111647
Offset: 1

Views

Author

R. H. Hardin, Feb 19 2012

Keywords

Comments

Column 3 of A207729.

Examples

			Some solutions for n=4:
  1 1 0   1 1 1   1 0 0   1 0 0   0 1 1   0 1 1   0 0 1
  1 0 1   1 1 1   1 0 0   1 1 1   0 1 1   1 1 1   1 1 1
  1 0 0   1 1 0   1 0 0   1 0 0   1 1 1   0 1 1   0 0 1
  1 1 0   1 0 0   1 1 1   1 0 0   0 0 1   0 1 1   0 0 1
		

Crossrefs

Cf. A207729.

Programs

  • Maple
    Configs:= select(A -> A[1..3] <> [0,0,0] and A[4..6] <> [0,0,0] and A[1..3] <> [0,1,0] and A[4..6] <> [0,1,0],
    [seq(convert(x,base,2)[1..6],x=2^6..2^7-1)]):
    compat:= proc(i,j) local k,col;
       if Configs[i][4..6] <> Configs[j][1..3] then return 0 fi;
       for k from 1 to 3 do
          col:= [Configs[i][k],Configs[i][k+3],Configs[j][k+3]];
          if col = [0,1,1] or col = [1,0,1] then return 0 fi;
       od;
       1
    end proc:
    T:= Matrix(36,36,compat):
    u:= Vector[row](36, 1):
    v:= Vector(36,1):
    6,seq(u . T^(n-2) . v,n=2..50); # Robert Israel, Mar 05 2018
  • Mathematica
    LinearRecurrence[{3, -2, 3, -6, 0, 0, 3, 1, 0, -1}, {6, 36, 78, 189, 490, 1113, 2449, 5474, 12036, 26100}, 30] (* Jean-François Alcover, May 15 2023, after Robert Israel's confirmed formula *)

Formula

Empirical: a(n) = 3*a(n-1) - 2*a(n-2) + 3*a(n-3) - 6*a(n-4) + 3*a(n-7) + a(n-8) - a(n-10).
Formula confirmed by Robert Israel, Mar 05 2018 (see link).
G.f.: x*(6 + 18*x - 18*x^2 + 9*x^3 + 7*x^4 + 3*x^5 - 9*x^6 - x^7 - x^8 + x^9) / ((1 - x)*(1 + x^2 - x^3)*(1 - x - x^3)*(1 - x - 2*x^2 - x^3)). - Colin Barker, Mar 05 2018