cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A207803 Number of n X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

2, 16, 102, 1970, 57184, 3511534, 388134978, 82999241712, 33304563708790, 25409866877400042, 36648009080479725120, 100161609586888545878490, 518205987191621802807914102, 5077481011895003740693688753360
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2012

Keywords

Comments

Diagonal of A207808.

Examples

			Some solutions for n=4
..1..0..1..1....1..1..0..0....0..1..0..0....0..1..1..0....1..0..1..1
..0..1..0..0....1..1..1..0....0..1..1..0....0..1..1..0....0..1..1..0
..0..1..0..0....0..1..1..1....0..1..1..0....1..0..1..0....0..1..0..0
..1..0..1..0....0..1..1..1....0..1..1..1....1..0..1..1....0..1..0..0
		

Crossrefs

Cf. A207808.

A207804 Number of nX4 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 378, 1970, 9168, 44538, 212814, 1022652, 4904350, 23540322, 112961952, 542115042, 2601499810, 12484112380, 59908695042, 287491745166, 1379628582160, 6620628961338, 31771352156610, 152465531316540, 731656970494958
Offset: 1

Views

Author

R. H. Hardin Feb 20 2012

Keywords

Comments

Column 4 of A207808

Examples

			Some solutions for n=4
..1..0..1..1....1..0..1..0....0..1..1..0....0..1..1..0....1..1..0..0
..0..1..1..0....1..1..0..1....1..1..0..0....1..1..0..0....1..1..1..0
..0..1..0..0....0..1..0..1....1..1..0..0....1..1..0..0....0..1..1..1
..0..1..0..0....0..1..1..1....0..1..1..1....1..1..1..1....0..1..1..1
		

Formula

Empirical: a(n) = 4*a(n-1) +a(n-2) -8*a(n-3) +53*a(n-4) +166*a(n-5) +347*a(n-6) +208*a(n-7) -166*a(n-8) -780*a(n-9) -2484*a(n-10) -3678*a(n-11) -3721*a(n-12) -644*a(n-13) +1359*a(n-14) +1318*a(n-15) +536*a(n-16) -82*a(n-17) +446*a(n-18) -106*a(n-19) -85*a(n-20) -32*a(n-21) -47*a(n-22) +28*a(n-23) -9*a(n-24) +a(n-26)

A207805 Number of nX5 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

16, 256, 1260, 9040, 57184, 379444, 2472540, 16206848, 106011620, 694009184, 4542097536, 29729773868, 194584835796, 1273595422280, 8335887348348, 54559852092224, 357103742801920, 2337306999308120, 15298084063769760
Offset: 1

Views

Author

R. H. Hardin Feb 20 2012

Keywords

Comments

Column 5 of A207808

Examples

			Some solutions for n=4
..1..1..0..1..1....0..1..1..0..0....1..0..1..1..1....1..0..1..1..1
..1..1..0..1..0....0..1..1..0..1....0..1..1..1..1....0..1..0..1..1
..1..0..1..0..0....1..0..1..1..1....0..1..1..1..1....0..1..0..1..1
..1..0..1..0..1....1..0..1..1..0....1..1..0..1..1....0..1..1..0..1
		

Formula

Empirical: a(n) = 5*a(n-1) +4*a(n-2) +a(n-3) +156*a(n-4) +450*a(n-5) +1534*a(n-6) +284*a(n-7) -6636*a(n-8) -20429*a(n-9) -58954*a(n-10) -85923*a(n-11) -30935*a(n-12) +298240*a(n-13) +715086*a(n-14) +668992*a(n-15) -111819*a(n-16) -1321603*a(n-17) -1450152*a(n-18) -1115039*a(n-19) +135434*a(n-20) +394522*a(n-21) +1112524*a(n-22) +852540*a(n-23) +503094*a(n-24) -120123*a(n-25) -590386*a(n-26) -94045*a(n-27) -172107*a(n-28) +175024*a(n-29) -88826*a(n-30) -2748*a(n-31) +28009*a(n-32) -5237*a(n-33) +22780*a(n-34) -15137*a(n-35) +3224*a(n-36) +3094*a(n-37) -2442*a(n-38) +500*a(n-39) +40*a(n-40) -87*a(n-41) +10*a(n-42) -a(n-43) -a(n-44)

A207806 Number of nX6 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

26, 676, 4374, 43990, 382288, 3511534, 31569510, 285774964, 2580956950, 23333448086, 210885788448, 1906172464566, 17228491782138, 155715573550500, 1407388340653890, 12720361717357138, 114970670286577872
Offset: 1

Views

Author

R. H. Hardin Feb 20 2012

Keywords

Comments

Column 6 of A207808

Examples

			Some solutions for n=4
..1..1..0..1..1..1....1..1..0..1..0..0....1..0..1..1..1..0....0..1..1..1..1..0
..1..1..0..1..1..0....0..1..0..1..1..0....0..1..1..1..1..0....0..1..1..1..1..0
..0..1..1..0..1..0....0..1..0..1..1..1....0..1..1..1..1..0....1..0..1..0..1..1
..0..1..1..0..1..0....0..1..0..1..0..1....1..1..0..1..1..0....1..0..1..0..1..1
		

A207807 Number of nX7 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

42, 1764, 14946, 209050, 2485392, 31431114, 388134978, 4829044276, 59932307050, 744575694026, 9247079324448, 114855785954414, 1426522758927058, 17717786782797060, 220058305703080950, 2733176728894351270
Offset: 1

Views

Author

R. H. Hardin Feb 20 2012

Keywords

Comments

Column 7 of A207808

Examples

			Some solutions for n=4
..1..0..1..0..1..1..1....0..1..0..1..0..1..0....1..0..1..1..0..1..0
..0..1..1..0..1..1..1....1..0..1..0..1..1..0....0..1..1..1..0..1..0
..0..1..1..0..1..1..1....1..0..1..0..1..0..1....0..1..0..1..1..0..1
..1..0..1..0..1..1..0....1..0..1..0..1..0..1....0..1..0..1..1..0..1
		

A207809 Number of 4 X n 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

10, 100, 370, 1970, 9040, 43990, 209050, 1002960, 4793390, 22944590, 109759520, 525189790, 2512723030, 12022412680, 57521607650, 275215898890, 1316784620900, 6300231318630, 30143802148430, 144224703156300, 690051081572450
Offset: 1

Views

Author

R. H. Hardin, Feb 20 2012

Keywords

Comments

Row 4 of A207808.

Examples

			Some solutions for n=4:
..0..1..1..0....0..1..0..1....0..1..1..0....0..1..1..0....1..0..1..1
..1..1..0..0....1..0..1..1....0..1..1..1....0..1..0..1....0..1..0..0
..1..1..0..0....1..0..1..0....1..1..0..1....0..1..0..1....0..1..0..0
..0..1..1..1....1..1..0..0....1..1..0..1....1..1..0..1....1..0..1..0
		

Crossrefs

Cf. A207808.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=2*a(n-1) +13*a(n-2) +4*a(n-3) -12*a(n-4) +a(n-5) +a(n-6), seq(a(i)=[10,100,370,1970,9040,43990][i],i=1..6)},a(n),remember):
    map(f, [$1..50]); # Robert Israel, Jul 03 2016

Formula

Empirical: a(n) = 2*a(n-1) +13*a(n-2) +4*a(n-3) -12*a(n-4) +a(n-5) +a(n-6)
From Robert Israel, Jul 03 2016: (Start)
The empirical recursion is true: see link for Maple verification.
G.f.: (10*x+80*x^2+40*x^3-110*x^4+10*x^5+10*x^6)/(1-2*x-13*x^2-4*x^3+12*x^4-x^5-x^6). (End)

A207810 Number of 5Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

16, 256, 1232, 9168, 57184, 382288, 2485392, 16340928, 106947696, 701265456, 4594672480, 30114026544, 197343497360, 1293310030272, 8475616206320, 55544979901904, 364012404953344, 2385549961744304, 15633651159374128
Offset: 1

Views

Author

R. H. Hardin Feb 20 2012

Keywords

Comments

Row 5 of A207808

Examples

			Some solutions for n=4
..1..1..0..1....1..1..0..1....1..0..1..0....0..1..0..1....1..0..1..1
..1..1..0..1....0..1..1..0....0..1..0..1....1..0..1..1....0..1..1..0
..1..0..1..0....0..1..1..0....0..1..0..1....1..0..1..0....0..1..1..0
..1..0..1..0....1..0..1..0....1..1..1..1....0..1..0..0....1..0..1..0
..1..1..0..1....1..0..1..1....1..0..1..0....0..1..0..1....1..0..1..1
		

Formula

Empirical: a(n) = 3*a(n-1) +27*a(n-2) -10*a(n-3) -103*a(n-4) +48*a(n-5) +81*a(n-6) -29*a(n-7) -19*a(n-8) +2*a(n-9) +a(n-10)

A207811 Number of 6Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

26, 676, 4238, 44538, 379444, 3511534, 31431114, 285153752, 2572767886, 23265635822, 210190098664, 1899710583862, 17166646906318, 155137779620824, 1401955916796682, 12669461215751574, 114492932648683056
Offset: 1

Views

Author

R. H. Hardin Feb 20 2012

Keywords

Comments

Row 6 of A207808

Examples

			Some solutions for n=4
..1..0..1..0....1..1..0..0....1..1..0..1....1..1..1..0....0..1..0..0
..1..1..1..1....1..1..1..0....1..0..1..1....1..1..1..1....1..0..1..1
..1..1..1..1....1..0..1..0....1..0..1..0....0..1..1..1....1..0..1..1
..1..1..0..0....1..0..1..0....0..1..1..0....0..1..0..1....0..1..0..1
..1..1..0..0....1..0..1..1....0..1..0..1....1..1..0..1....0..1..0..0
..0..1..1..1....0..1..0..1....0..1..0..1....1..0..1..0....0..1..1..0
		

Formula

Empirical: a(n) = 6*a(n-1) +47*a(n-2) -149*a(n-3) -401*a(n-4) +1365*a(n-5) +291*a(n-6) -3183*a(n-7) +1053*a(n-8) +2463*a(n-9) -1038*a(n-10) -814*a(n-11) +294*a(n-12) +112*a(n-13) -30*a(n-14) -5*a(n-15) +a(n-16)

A207812 Number of 7Xn 0..1 arrays avoiding 0 0 0 and 0 0 1 horizontally and 0 1 0 and 1 0 1 vertically.

Original entry on oeis.org

42, 1764, 14406, 212814, 2472540, 31569510, 388134978, 4844843724, 60105117534, 747536620446, 9287588538564, 115441611327546, 1434634623961938, 17830155700946568, 221591726286572670, 2753968042158084066
Offset: 1

Views

Author

R. H. Hardin Feb 20 2012

Keywords

Comments

Row 7 of A207808

Examples

			Some solutions for n=4
..1..0..1..0....0..1..0..1....1..0..1..0....0..1..0..1....0..1..1..0
..1..1..0..0....0..1..0..1....0..1..0..1....0..1..0..0....1..0..1..0
..1..1..0..0....1..1..0..0....0..1..0..1....0..1..0..0....1..0..1..1
..1..0..1..0....1..1..1..0....1..0..1..0....0..1..0..0....0..1..0..1
..1..0..1..1....0..1..1..1....1..0..1..0....1..0..1..1....0..1..0..1
..0..1..0..1....0..1..1..1....1..0..1..1....1..0..1..1....1..1..0..1
..0..1..0..0....0..1..1..1....0..1..0..1....0..1..1..1....1..1..1..0
		

Formula

Empirical: a(n) = 6*a(n-1) +111*a(n-2) -215*a(n-3) -2612*a(n-4) +4413*a(n-5) +22651*a(n-6) -38339*a(n-7) -87492*a(n-8) +141631*a(n-9) +180683*a(n-10) -251999*a(n-11) -220845*a(n-12) +230015*a(n-13) +159866*a(n-14) -110128*a(n-15) -65501*a(n-16) +27211*a(n-17) +14223*a(n-18) -3284*a(n-19) -1500*a(n-20) +176*a(n-21) +69*a(n-22) -3*a(n-23) -a(n-24)
Showing 1-9 of 9 results.