A207815 Triangle of coefficients of Chebyshev's S(n,x-3) polynomials (exponents of x in increasing order).
1, -3, 1, 8, -6, 1, -21, 25, -9, 1, 55, -90, 51, -12, 1, -144, 300, -234, 86, -15, 1, 377, -954, 951, -480, 130, -18, 1, -987, 2939, -3573, 2305, -855, 183, -21, 1, 2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1, -6765, 26195, -43398, 40426, -23373, 8715
Offset: 0
Examples
Triangle begins: 1; -3, 1; 8, -6, 1; -21, 25, -9, 1; 55, -90, 51, -12, 1; -144, 300, -234, 86, -15, 1; 377, -954, 951, -480, 130, -18, 1; -987, 2939, -3573, 2305, -855, 183, -21, 1; 2584, -8850, 12707, -10008, 4740, -1386, 245, -24, 1; -6765, 26195, -43398, 40426, -23373, 8715, -2100, 316, -27, 1; Triangle (0, -3, 1/3, -1/3, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins: 1; 0, 1; 0, -3, 1; 0, 8, -6, 1; 0, -21, 25, -9, 1; 0, 55, -90, 51, -12, 1; 0, -144, 300, -234, 86, -15, 1; ...
Crossrefs
Programs
-
Mathematica
T[?Negative, ] = 0; T[0, 0] = 1; T[0, ] = 0; T[n, n_] = 1; T[n_, k_] := T[n, k] = T[n - 1, k - 1] - T[n - 2, k] - 3 T[n - 1, k]; Table[T[n, k], {n, 0, 9}, {k, 0, n}] (* Jean-François Alcover, Jun 22 2018 *)
-
PARI
row(n) = Vecrev(subst(polchebyshev(n,2,x/2), x, x-3)) tabf(nn) = for (n=0, nn, print(row(n))); \\ Michel Marcus, Jun 22 2018
-
Sage
@CachedFunction def A207815(n,k): if n< 0: return 0 if n==0: return 1 if k == 0 else 0 return A207815(n-1,k-1)-A207815(n-2,k)-3*A207815(n-1,k) for n in (0..9): [A207815(n,k) for k in (0..n)] # Peter Luschny, Nov 20 2012
Formula
T(n,k) = (-1)^(n-k)*A125662(n,k).
Recurrence: T(n,k) = (-3)*T(n-1,k) + T(n-1,k-1) - T(n-2,k).
G.f.: 1/(1+3*x+x^2-y*x).
Extensions
T(8,0) corrected by Jean-François Alcover, Jun 22 2018
Comments