A210465 Let p_(3,1)(m) be the m-th prime == 1(mod 3). Then a(n) is the smallest p_(3,1)(m) such that the interval(p_(3,1)(m)*n, p_(3,1)(m+1)*n) contains exactly one prime == 1(mod 3).
7, 13, 193, 271, 157, 193, 1297, 1741, 1231, 1033, 3541, 1447, 727, 2341, 9337, 1747, 9007, 2287, 3307, 14401, 8887, 8161, 8461, 28753, 23623, 23893, 10861, 59233, 70111, 28927, 44257, 101113, 152947, 41941, 65167, 41263, 183301, 409573, 150517, 35803, 138883, 81547, 79693
Offset: 2
Keywords
Programs
-
Mathematica
bPrime=Select[Table[Prime[n],{n,1000000}],Mod[#,3]==1&];(*A002476*) binarySearch[lst_,find_]:=Module[{lo=1,up=Length[lst],v},(While[lo<=up,v=Floor[(lo+up)/2];If[lst[[v]]-find==0,Return[v]];If[lst[[v]]
0&]]]+offset-1]]; z=1;(*example for "contains exactly ONE b- primes"*)Table[bPrime[[NestWhile[#1+1&,1,!((nextBPrime[n bPrime[[#1]],z] n bPrime[[#1+1]]))&]]],{n,2,20}]
Comments