A207823 Triangle of coefficients of Chebyshev's S(n,x+4) polynomials (exponents of x in increasing order).
1, 4, 1, 15, 8, 1, 56, 46, 12, 1, 209, 232, 93, 16, 1, 780, 1091, 592, 156, 20, 1, 2911, 4912, 3366, 1200, 235, 24, 1, 10864, 21468, 17784, 8010, 2120, 330, 28, 1, 40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1, 151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1
Offset: 0
Examples
Triangle begins: 1 4, 1 15, 8, 1 56, 46, 12, 1 209, 232, 93, 16, 1 780, 1091, 592, 156, 20, 1 2911, 4912, 3366, 1200, 235, 24, 1 10864, 21468, 17784, 8010, 2120, 330, 28, 1 40545, 91824, 89238, 48624, 16255, 3416, 441, 32, 1 151316, 386373, 430992, 275724, 111524, 29589, 5152, 568, 36, 1 ... Triangle (0, 4, -1/4, 1/4, 0, 0, ...) DELTA (1, 0, 0, 0, ...) begins: 1 0, 1 0, 4, 1 0, 15, 8, 1 0, 56, 46, 12, 1 0, 209, 232, 93, 16, 1 ...
Links
- Rigoberto Flórez, Leandro Junes, José L. Ramírez, Further Results on Paths in an n-Dimensional Cubic Lattice, J. Int. Seq. 21 (2018), #18.1.2.
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Crossrefs
Programs
-
Mathematica
With[{n = 9}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 4 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
Formula
Extensions
Offset changed to 0 by Georg Fischer, Feb 18 2020
Comments