A207824 Triangle of coefficients of Chebyshev's S(n,x+5) polynomials (exponents of x in increasing order).
1, 5, 1, 24, 10, 1, 115, 73, 15, 1, 551, 470, 147, 20, 1, 2640, 2828, 1190, 246, 25, 1, 12649, 16310, 8631, 2400, 370, 30, 1, 60605, 91371, 58275, 20385, 4225, 519, 35, 1, 290376, 501150, 374115, 157800, 41140, 6790, 693, 40, 1
Offset: 0
Examples
Triangle begins : 1 5, 1 24, 10, 1 115, 73, 15, 1 551, 470, 147, 20, 1 2640, 2828, 1190, 246, 25, 1 12649, 16310, 8631, 2400, 370, 30, 1 ... Triangle (0, 5, -1/5, 1/5, 0, 0, 0,...) DELTA (1, 0, 0, 0, ...) begins : 1 0, 1 0, 5, 1 0, 24, 10, 1 0, 115, 73, 15, 1 0, 551, 470, 147, 20, 1 0, 2640, 2828, 1190, 246, 25, 1 ...
Links
- Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150)
- Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4.
Crossrefs
Programs
-
Mathematica
With[{n = 8}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 5 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
-
PARI
row(n) = Vecrev(polchebyshev(n, 2, (x+5)/2)); \\ Michel Marcus, Apr 26 2018
Comments