cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207824 Triangle of coefficients of Chebyshev's S(n,x+5) polynomials (exponents of x in increasing order).

Original entry on oeis.org

1, 5, 1, 24, 10, 1, 115, 73, 15, 1, 551, 470, 147, 20, 1, 2640, 2828, 1190, 246, 25, 1, 12649, 16310, 8631, 2400, 370, 30, 1, 60605, 91371, 58275, 20385, 4225, 519, 35, 1, 290376, 501150, 374115, 157800, 41140, 6790, 693, 40, 1
Offset: 0

Views

Author

Philippe Deléham, Feb 20 2012

Keywords

Comments

Riordan array (1/(1-5*x+x^2), x/(1-5*x+x^2)).
Subtriangle of triangle given by (0, 5, -1/5, 1/5, 0, 0, 0, 0, 0, 0, 0, 0...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938.
Unsigned version of A123967 and A179900.
For 1<=k<=n, T(n,k) equals the number of (n-1)-length words over {0,1,2,3,4,5} containing k-1 letters equal 5 and avoiding 01. - Milan Janjic, Dec 20 2016

Examples

			Triangle begins :
  1
  5, 1
  24, 10, 1
  115, 73, 15, 1
  551, 470, 147, 20, 1
  2640, 2828, 1190, 246, 25, 1
  12649, 16310, 8631, 2400, 370, 30, 1
  ...
Triangle (0, 5, -1/5, 1/5, 0, 0, 0,...) DELTA (1, 0, 0, 0, ...) begins :
  1
  0, 1
  0, 5, 1
  0, 24, 10, 1
  0, 115, 73, 15, 1
  0, 551, 470, 147, 20, 1
  0, 2640, 2828, 1190, 246, 25, 1
  ...
		

Crossrefs

Cf. Triangles of coefficients of Chebyshev's S(n,x+k) polynomials : A207824 (k = 5), A207823 (k = 4), A125662 (k = 3), A078812 (k = 2), A101950 (k = 1), A049310 (k = 0), A104562 (k = -1), A053122 (k = -2), A207815 (k = -3), A159764 (k = -4), A123967 (k = -5).

Programs

  • Mathematica
    With[{n = 8}, DeleteCases[#, 0] & /@ CoefficientList[Series[1/(1 - 5 x + x^2 - y x), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* Michael De Vlieger, Apr 25 2018 *)
  • PARI
    row(n) = Vecrev(polchebyshev(n, 2, (x+5)/2)); \\ Michel Marcus, Apr 26 2018

Formula

Recurrence : T(n,k) = 5*T(n-1,k) + T(n-1,k-1) - T(n-2,k).
G.f.: 1/(1-5*x+x^2-y*x).
Diagonal sums are 5^n = A000351(n).
Row sums are A001109(n+1).
T(n,0) = A004254(n+1), T(n+1,n) = 5n+5 = A008587(n+1).