cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A207869 a(n) = Z(n,-1), where Z(n,x) is the n-th Zeckendorf polynomial.

Original entry on oeis.org

1, -1, 1, 2, -1, 0, -2, 1, 2, 0, 2, 3, -1, 0, -2, 0, 1, -2, -1, -3, 1, 2, 0, 2, 3, 0, 1, -1, 2, 3, 1, 3, 4, -1, 0, -2, 0, 1, -2, -1, -3, 0, 1, -1, 1, 2, -2, -1, -3, -1, 0, -3, -2, -4, 1, 2, 0, 2, 3, 0, 1, -1, 2, 3, 1, 3, 4, 0, 1, -1, 1, 2, -1, 0, -2, 2, 3, 1, 3, 4, 1, 2, 0
Offset: 1

Views

Author

Clark Kimberling, Feb 21 2012

Keywords

Comments

The Zeckendorf polynomials Z(x,n) are defined and ordered at A207813.

Examples

			The first ten Zeckendorf polynomials are 1, x, x^2, x^2 + 1, x^3, x^3 + 1, x + x^3, x^4, 1 + x^4, x + x^4; their values at x=-1 are 1, -1, 1, 2, -1, 0, -2, 1, 2, 0, indicating initial terms for A207869 and A207870.
		

Crossrefs

Programs

  • Mathematica
    fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]],
       t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k],
        AppendTo[fr, 1]; t = t - Fibonacci[k],
        AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n],
          {n, 1, 500}];
    b[n_] := Reverse[Table[x^k, {k, 0, n}]]
    p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]
    Table[p[n, x], {n, 1, 40}]
    Table[p[n, x] /. x -> 1, {n, 1, 120}]  (* A007895 *)
    Table[p[n, x] /. x -> 2, {n, 1, 120}]  (* A003714 *)
    Table[p[n, x] /. x -> 3, {n, 1, 120}]  (* A060140 *)
       t1 = Table[p[n, x] /. x -> -1,
       {n, 1, 420}]                        (* A207869 *)
    Flatten[Position[t1, 0]]               (* A207870 *)
    t2 = Table[p[n, x] /. x -> I, {n, 1, 420}];
    Flatten[Position[t2, 0]]               (* A207871 *)
    Denominator[Table[p[n, x] /. x -> 1/2, {n, 1, 120}]]  (* A207872 *)
    Numerator[Table[p[n, x] /. x -> 1/2, {n, 1, 120}]]    (* A207873 *)
Showing 1-1 of 1 results.