cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207873 Numerator of Z(n,1/2), where Z(n,x) is the n-th Zeckendorf polynomial.

Original entry on oeis.org

1, 1, 1, 5, 1, 9, 5, 1, 17, 9, 5, 21, 1, 33, 17, 9, 41, 5, 37, 21, 1, 65, 33, 17, 81, 9, 73, 41, 5, 69, 37, 21, 85, 1, 129, 65, 33, 161, 17, 145, 81, 9, 137, 73, 41, 169, 5, 133, 69, 37, 165, 21, 149, 85, 1, 257, 129, 65, 321, 33, 289, 161, 17, 273, 145, 81, 337
Offset: 1

Views

Author

Clark Kimberling, Feb 21 2012

Keywords

Comments

The Zeckendorf polynomials Z(x,n) are defined and ordered at A207813. See A207872 for denominators to match A207873.

Crossrefs

Programs

  • Mathematica
    fb[n_] := Block[{k = Ceiling[Log[GoldenRatio, n*Sqrt[5]]], t = n, fr = {}}, While[k > 1, If[t >= Fibonacci[k], AppendTo[fr, 1]; t = t - Fibonacci[k],
        AppendTo[fr, 0]]; k--]; fr]; t = Table[fb[n],
          {n, 1, 500}];
    b[n_] := Reverse[Table[x^k, {k, 0, n}]]
    p[n_, x_] := t[[n]].b[-1 + Length[t[[n]]]]
    Table[p[n, x], {n, 1, 40}]
    Denominator[Table[p[n, x] /. x -> 1/2,
       {n, 1, 120}]]                       (* A207872 *)
    Numerator[Table[p[n, x] /. x -> 1/2,
       {n, 1, 120}]]                       (* A207873 *)