cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A207997 T(n,k) = number of n X k 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any horizontal or vertical neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 1, 1, 2, 3, 2, 4, 9, 9, 4, 8, 27, 41, 27, 8, 16, 81, 187, 187, 81, 16, 32, 243, 853, 1302, 853, 243, 32, 64, 729, 3891, 9075, 9075, 3891, 729, 64, 128, 2187, 17749, 63267, 96831, 63267, 17749, 2187, 128, 256, 6561, 80963, 441090, 1034073, 1034073, 441090, 80963
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Comments

Number of colorings of the grid graph P_n X P_k using a maximum of 3 colors up to permutation of the colors. - Andrew Howroyd, Jun 26 2017

Examples

			Table starts
..1....1.....2.......4.........8.........16...........32............64
..1....3.....9......27........81........243..........729..........2187
..2....9....41.....187.......853.......3891........17749.........80963
..4...27...187....1302......9075......63267.......441090.......3075255
..8...81...853....9075.....96831....1034073.....11045757.....117997043
.16..243..3891...63267...1034073...16932816....277458045....4547477370
.32..729.17749..441090..11045757..277458045...6978332618..175605187731
.64.2187.80963.3075255.117997043.4547477370.175605187731.6787438272198
...
Some solutions for n=4, k=3:
..0..1..2....0..1..0....0..1..0....0..1..2....0..1..2....0..1..2....0..1..0
..2..0..1....2..0..2....1..0..2....1..2..1....2..0..1....1..2..1....1..2..1
..0..2..0....0..1..0....2..1..0....0..1..2....0..2..0....0..1..2....2..0..2
..1..0..1....1..2..1....1..0..1....1..2..0....2..0..2....2..0..1....1..2..0
		

Crossrefs

Cf. A020698 (column 3), A078100 (column 4), A207994 (column 5), A207995 (column 6), A207996 (column 7).
Main diagonal is A207993.
Cf. A198715 (4 colorings), A198906 (5 colorings), A198982 (6 colorings), A198723 (7 colorings), A198914 (8 colorings), A207868 (unlimited).

Formula

2*T(n,m) = A078099(n,m) for m>1. - R. J. Mathar, Nov 23 2015