cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208057 Triangle by rows, generated from the odd integers and related to A000165.

Original entry on oeis.org

1, 1, 1, 4, 3, 1, 24, 18, 5, 1, 192, 144, 40, 7, 1, 1920, 1440, 400, 70, 9, 1, 23040, 17280, 4800, 840, 108, 11, 1, 322560, 241920, 67200, 11760, 1512, 154, 13, 1, 5160960, 3870720, 1075200, 188160, 24192, 2464, 208, 15, 1
Offset: 0

Views

Author

Gary W. Adamson, Feb 22 2012

Keywords

Comments

Row sums = A000165, the double factorial numbers: (1, 2, 8, 48, 384,...).
Left border = A002866 and the eigensequence of the odd integers prefaced with a 1.

Examples

			First few rows of the triangle:
  1;
  1, 1;
  4, 3, 1;
  24, 18, 5, 1;
  192, 144, 40, 7, 1;
  1920, 1440, 400, 70, 9, 1;
  23040, 17280, 4800, 840, 108, 11, 1;
  322560, 241920, 67200, 11760, 1512, 154, 13, 1;
  ...
		

Crossrefs

Programs

  • Maple
    T:= proc(n) option remember; local M;
          M:= (Matrix(n+1, (i, j)-> `if`(i=j, 1, `if`(i>j, -2*j+1, 0)))^(-1));
          seq(M[n+1, k], k=1..n+1)
        end:
    seq(T(n), n=0..10);  # Alois P. Heinz, Feb 27 2012
  • Mathematica
    T[n_] := T[n] = Module[{M}, M = Table[If[i == j, 1, If[i>j, -2*j+1, 0]], {i, 1, n+1 }, {j, 1, n+1}] // Inverse; M[[n+1]]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)

Formula

Eigentriangle of triangle A158405 (odd integers in every row: (1, 3, 5,...)); the inverse of:
1;
-1, 1;
-1, -3, 1;
-1, -3, -5, 1;
-1, -3, -5, -7, 1;
...

Extensions

Typo in term 17 corrected by Alois P. Heinz, Dec 06 2012