A208057 Triangle by rows, generated from the odd integers and related to A000165.
1, 1, 1, 4, 3, 1, 24, 18, 5, 1, 192, 144, 40, 7, 1, 1920, 1440, 400, 70, 9, 1, 23040, 17280, 4800, 840, 108, 11, 1, 322560, 241920, 67200, 11760, 1512, 154, 13, 1, 5160960, 3870720, 1075200, 188160, 24192, 2464, 208, 15, 1
Offset: 0
Examples
First few rows of the triangle: 1; 1, 1; 4, 3, 1; 24, 18, 5, 1; 192, 144, 40, 7, 1; 1920, 1440, 400, 70, 9, 1; 23040, 17280, 4800, 840, 108, 11, 1; 322560, 241920, 67200, 11760, 1512, 154, 13, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
T:= proc(n) option remember; local M; M:= (Matrix(n+1, (i, j)-> `if`(i=j, 1, `if`(i>j, -2*j+1, 0)))^(-1)); seq(M[n+1, k], k=1..n+1) end: seq(T(n), n=0..10); # Alois P. Heinz, Feb 27 2012
-
Mathematica
T[n_] := T[n] = Module[{M}, M = Table[If[i == j, 1, If[i>j, -2*j+1, 0]], {i, 1, n+1 }, {j, 1, n+1}] // Inverse; M[[n+1]]]; Table[T[n], {n, 0, 10}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
Formula
Eigentriangle of triangle A158405 (odd integers in every row: (1, 3, 5,...)); the inverse of:
1;
-1, 1;
-1, -3, 1;
-1, -3, -5, 1;
-1, -3, -5, -7, 1;
...
Extensions
Typo in term 17 corrected by Alois P. Heinz, Dec 06 2012
Comments