A208058 Triangle by rows relating to the factorials, generated from A002260.
1, 1, 1, 1, 2, 1, 2, 4, 3, 1, 6, 12, 9, 4, 1, 24, 48, 36, 16, 5, 1, 120, 240, 180, 80, 25, 6, 1, 720, 1440, 1080, 480, 150, 36, 7, 1, 5040, 10080, 7560, 3360, 1050, 252, 49, 8, 1, 40320, 80640, 60480, 26880, 8400, 2016, 392, 64, 9, 1
Offset: 0
Examples
First few rows of the triangle = 1; 1, 1; 1, 2, 1; 2, 4, 3, 1; 6, 12, 9, 4, 1; 24, 48, 36, 16, 5, 1; 120, 240, 180, 80, 25, 6, 1; 720, 1440, 1080, 480, 150, 36, 7, 1; 5040, 10080, 7560, 3360, 1050, 252, 49, 8, 1; ...
Links
- Alois P. Heinz, Rows n = 0..140, flattened
Programs
-
Maple
T:= proc(n) option remember; local M, k; M:= Matrix(n+1, (i, j)-> `if`(i=j, 1, `if`(i>j, j*(-1)^(i+j), 0)))^(-1); seq(M[n+1, k], k=1..n+1) end: seq(T(n), n=0..14); # Alois P. Heinz, Feb 24 2012
-
Mathematica
T[n_] := T[n] = Module[{M}, M = Table[If[i == j, 1, If[i>j, j*(-1)^(i+j), 0]], {i, 1, n+1}, {j, 1, n+1}] // Inverse; M[[n+1]]]; Table[T[n], {n, 0, 14}] // Flatten (* Jean-François Alcover, Mar 09 2015, after Alois P. Heinz *)
Formula
Inverse of:
1;
-1, 1;
1, -2, 1;
-1, 2, -3, 1;
1, -2, 3, -4, 1;
..., where triangle A002260 = (1; 1,2; 1,2,3;...)
Comments