cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208083 Number of primes of the form 2^n - 2^k - 1, 1 <= k < n.

Original entry on oeis.org

0, 0, 2, 3, 2, 4, 0, 5, 4, 3, 1, 5, 1, 5, 0, 3, 2, 9, 1, 12, 4, 5, 0, 7, 1, 2, 0, 1, 5, 4, 0, 8, 5, 1, 1, 9, 0, 6, 0, 7, 1, 6, 0, 4, 7, 2, 1, 10, 3, 3, 1, 2, 1, 6, 0, 4, 3, 0, 1, 8, 3, 4, 0, 3, 1, 8, 1, 2, 2, 3, 0, 9, 1, 5, 2, 5, 8, 3, 0, 10, 3, 0, 2, 4, 4, 6
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 23 2012

Keywords

Comments

Number of primes in (n-1)-st row of the triangle in A081118;
a(A138290(n)+1) = 0;
for n >= 0: a(A208091(n)) = n and a(m) <> n for m < A208091(n).

Examples

			n _ A208083(n) ________________ (n-1)-st row of A081118 _________
5   #{23,29} = 2                [15,23,27,29]
6   #{31,47,59,61} = 4          [31,47,55,59,61]
7   #{} = 0                     [63,95,111,119,123,125]
8   #{127,191,223,239,251} = 5  [127,191,223,239,247,251,253]
9   #{383,479,503,509} = 4      [255,383,447,479,495,503,507,509]
		

Crossrefs

Programs

  • Haskell
    a208083 = sum . map a010051 . a081118_row
    
  • Maple
    f:= n -> nops(select(k -> isprime(2^n-2^k-1),[$1..n-1])):
    map(f, [$1..100]); # Robert Israel, Jun 12 2018
  • Mathematica
    a[n_] := Module[{m = 2^n - 1, cnt = 0}, For[ k = 1, k < n, k++, If[PrimeQ[m - 2^k], cnt++]]; cnt]; Table[a[n], {n, 2, 86}] (* Jean-François Alcover, Sep 12 2013 *)
  • PARI
    a(n)=sum(k=1,n-1,ispseudoprime(2^n-2^k-1)) \\ Charles R Greathouse IV, Sep 12 2013

Formula

a(n) = Sum_{k=1..n-1} A010051(A081118(n-1,k)).