A208085 T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with every 2X2 subblock having the same number of equal edges as its horizontal neighbors and a different number from its vertical neighbors, and new values 0..1 introduced in row major order.
8, 20, 12, 56, 20, 24, 164, 32, 56, 36, 488, 52, 134, 60, 72, 1460, 84, 344, 96, 168, 108, 4376, 136, 888, 156, 402, 180, 216, 13124, 220, 2318, 252, 1032, 288, 504, 324, 39368, 356, 6056, 408, 2664, 468, 1206, 540, 648, 118100, 576, 15848, 660, 6954, 756, 3096
Offset: 1
Examples
Some solutions for n=4 k=3 ..0..1..0..0....0..1..0..1....0..0..0..0....0..1..1..1....0..0..0..0 ..0..1..0..1....0..0..0..0....1..1..1..1....0..1..0..1....1..0..1..0 ..1..0..1..0....0..0..0..0....1..1..1..1....1..0..1..0....0..1..0..1 ..1..0..1..0....1..0..1..0....1..0..1..0....1..0..1..0....0..0..0..0 ..0..1..0..1....0..1..0..1....0..1..0..1....0..1..0..1....0..0..0..0
Links
- R. H. Hardin, Table of n, a(n) for n = 1..5596
Formula
Empirical for column k:
k=1: a(n) = 3*a(n-2)
k=2..7: a(n) = 3*a(n-2) for n>3
Empirical for row n:
n=1: a(k)=4*a(k-1)-3*a(k-2)
n=2,4,6: a(k)=a(k-1)+a(k-2)
n=3,5,7: a(k)=3*a(k-1)-3*a(k-3)+a(k-4)
Comments