A208229 Consider Wolfram's universal 2-state 3-symbol Turing machine on a one-way-infinite tape with all but the first n cells initially blank and the head initially in state 1. a(n) is the maximum number of steps the Turing machine can make before halting.
3, 3, 15, 19, 37, 51, 69, 97, 111, 161, 167, 241, 247, 327, 341, 435, 451, 547, 571, 665, 709, 801, 849
Offset: 0
Examples
For n=3, the initial tape 021000000... runs for 19 steps, before terminating in the state 22221200000... with the head one cell to the left of the tape. This is the longest running time without starting with nonzero symbols further to the right, so a(3)=19
References
- Stephen Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 709, 1120.
Links
- Michael S. Branicky, Python program for OEIS A208229
- Wikipedia, Wolfram's 2-state 3-symbol Turing machine
- Stephen Wolfram, Wolfram 2,3 Turing Machine Research Prize
Programs
-
Mathematica
r = {{1, 2} -> {1, 1, -1}, {1, 1} -> {1, 2, -1}, {1, 0} -> {2, 1, 1}, {2, 2} -> {1, 0, 1}, {2, 1} -> {2, 2, 1}, {2, 0} -> {1, 2, -1}}; len[n_, k_] := Length[NestWhileList[TuringMachine[r, #] &, {{1,2}, {Prepend[IntegerDigits[k, 3, n], 3], 0}}, UnsameQ, All]] - 2; a[n_] := Max[Table[len[n, k], {k, 0, 3^(n - 1) - 1}]]; Join[{3},Table[a[n],{n,1,8}]]
-
Python
# see Branicky link
Extensions
a(12)-a(14) from Robert G. Wilson v, Mar 22 2015
a(15)-a(22) from Michael S. Branicky, Jul 07 2025
Comments