A221370
O.g.f.: Sum_{n>=0} n! * x^n * Product_{k=1..n} (k + x) / (1 + k^2*x + k*x^2).
Original entry on oeis.org
1, 1, 4, 21, 183, 2362, 42449, 1012897, 30961412, 1179154241, 54727128731, 3040047461530, 199109235070645, 15182265283487213, 1333242114217704924, 133577535961042535669, 15144191953510005439455, 1928873660857769308675146, 274228718414760130917382185
Offset: 0
O.g.f.: A(x) = 1 + x + 4*x^2 + 21*x^3 + 183*x^4 + 2362*x^5 + 42449*x^6 + ...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + 2!*x^2*(1+x)*(2+x)/((1+x+x^2)*(1+4*x+2*x^2)) + 3!*x^3*(1+x)*(2+x)*(3+x)/((1+x+x^2)*(1+4*x+2*x^2)*(1+9*x+3*x^2)) + 4!*x^4*(1+x)*(2+x)*(3+x)*(4+x)/((1+x+x^2)*(1+4*x+2*x^2)*(1+9*x+3*x^2)*(1+16*x+4*x^2)) + ...
-
a[n_] := Coefficient[Sum[m!*x^m*Product[(k + x)/(1 + k^2*x + k*x^2), {k, 1, m}], {m, 0, n}] + O[x]^(n + 1), x, n]; Table[a[n], {n, 0, 18}] (* Robert P. P. McKone, Sep 15 2023 *)
-
{a(n)=polcoeff( sum(m=0, n, m!*x^m*prod(k=1, m, (k+x)/(1+k^2*x+k*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
A209778
G.f.: Sum_{n>=0} x^n * Product_{k=1..n} (1 + k^2*x) / (1 + x + k^2*x^2).
Original entry on oeis.org
1, 1, 1, 3, 5, 19, 49, 203, 733, 3315, 15241, 76731, 419973, 2375027, 14842721, 94159595, 655550445, 4632480883, 35405788601, 276183156827, 2295741573013, 19588533436019, 175928886218769, 1628494746863243, 15721340742796029, 156753433757122035, 1619488446357906409
Offset: 0
G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 19*x^5 + 49*x^6 + 203*x^7 +...
where
A(x) = 1 + x*(1+x)/(1+x+x^2) + x^2*(1+x)*(1+4*x)/((1+x+x^2)*(1+x+4*x^2)) + x^3*(1+x)*(1+4*x)*(1+9*x)/((1+x+x^2)*(1+x+4*x^2)*(1+x+9*x^2)) + x^4*(1+x)*(1+4*x)*(1+9*x)*(1+16*x)/((1+x+x^2)*(1+x+4*x^2)*(1+x+9*x^2)*(1+x+16*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, x^m*prod(k=1, m, (1+k^2*x)/(1+x+k^2*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
A221971
G.f.: A(x,y) = Sum_{n>=0} n! * x^n*y^n * Product_{k=1..n} (1 + k*x) / (1 + k*x*y + k^2*x^2*y).
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 0, 4, 1, 0, 0, 3, 11, 1, 0, 0, 0, 27, 26, 1, 0, 0, 0, 17, 148, 57, 1, 0, 0, 0, 0, 278, 646, 120, 1, 0, 0, 0, 0, 155, 2590, 2481, 247, 1, 0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1, 0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1, 0, 0, 0
Offset: 0
Triangle begins:
1;
0, 1;
0, 1, 1;
0, 0, 4, 1;
0, 0, 3, 11, 1;
0, 0, 0, 27, 26, 1;
0, 0, 0, 17, 148, 57, 1;
0, 0, 0, 0, 278, 646, 120, 1;
0, 0, 0, 0, 155, 2590, 2481, 247, 1;
0, 0, 0, 0, 0, 4073, 18304, 8805, 502, 1;
0, 0, 0, 0, 0, 2073, 58427, 109699, 29682, 1013, 1;
0, 0, 0, 0, 0, 0, 80712, 614819, 590254, 96648, 2036, 1;
0, 0, 0, 0, 0, 0, 38227, 1665829, 5340996, 2948040, 307255, 4083, 1; ...
-
{T(n,k)=polcoeff(polcoeff(sum(m=0, n,m!*x^m*y^m*prod(k=1, m, (1+k*x)/(1+k*x*y+k^2*x^2*y +x*O(x^n)))),n,x),k,y)}
for(n=0, 12, for(k=0, n, print1(T(n, k), ", ")); print(""))
A221973
G.f.: Sum_{n>=0} n! * x^n * Product_{k=1..n} (3 + k*x)/(1 + 3*k*x + k^2*x^2).
Original entry on oeis.org
1, 3, 10, 39, 183, 1026, 6695, 49623, 411050, 3763599, 37757055, 411894882, 4854301087, 61459583007, 831926801290, 11989221944871, 183273754945959, 2961997167865410, 50462267599637975, 903853088211536295, 16980055625062979306, 333846342195447641343
Offset: 0
G.f.: A(x) = 1 + 3*x + 10*x^2 + 39*x^3 + 183*x^4 + 1026*x^5 + 6695*x^6 +...
where
A(x) = 1 + x*(3+x)/(1+3*x+x^2) + 2!*x^2*(3+x)*(3+2*x)/((1+3*x+x^2)*(1+6*x+4*x^2)) + 3!*x^3*(3+x)*(3+2*x)*(3+3*x)/((1+3*x+x^2)*(1+6*x+4*x^2)*(1+9*x+9*x^2)) + 4!*x^4*(3+x)*(3+2*x)*(3+3*x)*(3+4*x)/((1+3*x+x^2)*(1+6*x+4*x^2)*(1+9*x+9*x^2)*(1+12*x+16*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, m!*x^m*prod(k=1, m, (3+k*x)/(1+3*k*x+k^2*x^2 +x*O(x^n))) ), n)}
for(n=0, 30, print1(a(n), ", "))
A221988
G.f.: Sum_{n>=0} n! * (2*x)^n * Product_{k=1..n} (1 + k*x)/(1 + 2*k*x + 2*k^2*x^2).
Original entry on oeis.org
1, 2, 6, 24, 116, 664, 4392, 32928, 276016, 2557856, 25965408, 286538112, 3415359296, 43727878528, 598510015104, 8720853182976, 134778021389056, 2202055694727680, 37923940767905280, 686639853639505920, 13038833241899856896, 259119925532534413312
Offset: 0
G.f.: A(x) = 1 + 2*x + 6*x^2 + 24*x^3 + 116*x^4 + 664*x^5 + 4392*x^6 +...
where
A(x) = 1 + (2*x)*(1+x)/(1+2*x+2*x^2) + 2!*(2*x)^2*(1+x)*(1+2*x)/((1+2*x+2*x^2)*(1+4*x+8*x^2)) + 3!*(2*x)^3*(1+x)*(1+2*x)*(1+3*x)/((1+2*x+2*x^2)*(1+4*x+8*x^2)*(1+6*x+18*x^2)) + 4!*(2*x)^4*(1+x)*(1+2*x)*(1+3*x)*(1+4*x)/((1+2*x+2*x^2)*(1+4*x+8*x^2)*(1+6*x+18*x^2)*(1+8*x+32*x^2)) +...
-
{a(n)=polcoeff( sum(m=0, n, m!*(2*x)^m*prod(k=1, m, (1+k*x)/(1+2*k*x+2*k^2*x^2 +x*O(x^n))) ), n)}
for(n=0, 25, print1(a(n), ", "))
Showing 1-5 of 5 results.
Comments