A208247 Numbers having exactly one partition into two prime powers.
2, 3, 119, 127, 163, 179, 191, 193, 217, 219, 221, 223, 239, 251, 269, 311, 337, 343, 389, 403, 415, 419, 427, 431, 457, 491, 505, 547, 557, 569, 575, 581, 583, 597, 599, 613, 653, 659, 667, 671, 673, 683, 697, 719, 739, 749, 767, 779, 787, 799, 807, 817
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000
Programs
-
Haskell
a095841 n = a095841_list !! (n-1) a095841_list = filter ((== 1) . a071330) a000961_list
-
PARI
is(n)=sum(i=2,n\2,isprimepower(i)&&isprimepower(n-i))+isprimepower(n-1)==1 || n==2 \\ naive; Charles R Greathouse IV, Nov 21 2014
-
PARI
is(n)=my(s); forprime(p=2,n\2,if(isprimepower(n-p) && s++>1, return(0))); for(e=2,log(n)\log(2), forprime(p=2, sqrtnint(n\2,e), if(isprimepower(n-p^e) && s++>1,return(0)))); s+(!!isprimepower(n-1))==1 || n==2 \\ faster; Charles R Greathouse IV, Nov 21 2014
Comments