cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208275 The number of partitions of the set [n] where each element can be colored 1 or 2 avoiding the patterns 1^11^1 and 1^22^1 in the pattern sense.

Original entry on oeis.org

2, 5, 10, 21, 46, 107, 262, 675, 1818, 5105, 14882, 44929, 140070, 450055, 1487294, 5047327, 17562546, 62578845, 228062522, 849213293, 3227667742, 12511072803, 49417391350, 198758992859, 813460577482, 3385607683977, 14320923895890, 61532392279385
Offset: 1

Views

Author

Adam Goyt, Mar 12 2012

Keywords

Comments

A partition of the set [n] is a family nonempty disjoint sets whose union is [n]. The blocks are written in order of increasing minima. A partition of the set [n] can be written as a word p=p_1p_2...p_n where p_i=j if element i is in block j. A partition q=q_1q_2...q_n contains partition p=p_1p_2...p_k if there is a subword q_{i_1}q_{i_2}...q_{i_k} such that q_{i_a}

Examples

			For n=2 the a(2)=5 solutions are 1^11^2, 1^21^1, 1^12^1, 1^12^2, 1^22^2.
		

Programs

  • Mathematica
    a[n_] := With[{B = Binomial},
      Sum[B[i-1, j] B[n-i, j] j!, {i, 1, n}, {j, 0, Min[i-1, n-i]}] +
      Sum[B[i-2, j] B[n-i, j] (i-1) j!, {i, 2, n}, {j, 0, Min[i-2, n-i]}] +
      Sum[B[i-1, j] B[n-i-1, j] j!, {i, 1, n-1}, {j, 0, Min[i-1, n-i-1]}] + 1
    ];
    Array[a, 28] (* Jean-François Alcover, Oct 08 2018 *)

Formula

sum(sum(binomial(i-1, j)*binomial(n-i, j)*j!, j = 0 .. min(i-1, n-i)), i = 1 .. n)+sum(sum((i-1)*binomial(i-2, j)*binomial(n-i, j)*j!, j = 0 .. min(i-2, n-i)), i = 2 .. n)+sum(sum(binomial(i-1, j)*binomial(n-i-1, j)*j!, j = 0 .. min(i-1, n-i-1)), i = 1 .. n-1)+1