cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Adam Goyt

Adam Goyt's wiki page.

Adam Goyt has authored 6 sequences.

A208275 The number of partitions of the set [n] where each element can be colored 1 or 2 avoiding the patterns 1^11^1 and 1^22^1 in the pattern sense.

Original entry on oeis.org

2, 5, 10, 21, 46, 107, 262, 675, 1818, 5105, 14882, 44929, 140070, 450055, 1487294, 5047327, 17562546, 62578845, 228062522, 849213293, 3227667742, 12511072803, 49417391350, 198758992859, 813460577482, 3385607683977, 14320923895890, 61532392279385
Offset: 1

Author

Adam Goyt, Mar 12 2012

Keywords

Comments

A partition of the set [n] is a family nonempty disjoint sets whose union is [n]. The blocks are written in order of increasing minima. A partition of the set [n] can be written as a word p=p_1p_2...p_n where p_i=j if element i is in block j. A partition q=q_1q_2...q_n contains partition p=p_1p_2...p_k if there is a subword q_{i_1}q_{i_2}...q_{i_k} such that q_{i_a}

Examples

			For n=2 the a(2)=5 solutions are 1^11^2, 1^21^1, 1^12^1, 1^12^2, 1^22^2.
		

Programs

  • Mathematica
    a[n_] := With[{B = Binomial},
      Sum[B[i-1, j] B[n-i, j] j!, {i, 1, n}, {j, 0, Min[i-1, n-i]}] +
      Sum[B[i-2, j] B[n-i, j] (i-1) j!, {i, 2, n}, {j, 0, Min[i-2, n-i]}] +
      Sum[B[i-1, j] B[n-i-1, j] j!, {i, 1, n-1}, {j, 0, Min[i-1, n-i-1]}] + 1
    ];
    Array[a, 28] (* Jean-François Alcover, Oct 08 2018 *)

Formula

sum(sum(binomial(i-1, j)*binomial(n-i, j)*j!, j = 0 .. min(i-1, n-i)), i = 1 .. n)+sum(sum((i-1)*binomial(i-2, j)*binomial(n-i, j)*j!, j = 0 .. min(i-2, n-i)), i = 2 .. n)+sum(sum(binomial(i-1, j)*binomial(n-i-1, j)*j!, j = 0 .. min(i-1, n-i-1)), i = 1 .. n-1)+1

A209629 The number of partitions of the set [n] where each element can be colored 1 or 2 avoiding the patterns 1^12^2 and 1^22^1 in the pattern sense.

Original entry on oeis.org

2, 6, 16, 44, 134, 468, 1880, 8534, 42804, 232972, 1359186, 8431288, 55297064, 381815026, 2765949856, 20960349828, 165729870678, 1364153874460, 11665484934400, 103448317519318, 949739634410652, 9013431481088948, 88304011718557298, 891917738606387792
Offset: 1

Author

Adam Goyt, Mar 13 2012

Keywords

Comments

A partition of the set [n] is a family nonempty disjoint sets whose union is [n]. The blocks are written in order of increasing minima. A partition of the set [n] can be written as a word p=p_1p_2...p_n where p_i=j if element i is in block j. A partition q=q_1q_2...q_n contains partition p=p_1p_2...p_k if there is a subword q_{i_1}q_{i_2}...q_{i_k} such that q_{i_a}

Examples

			For n=2 the a(2)=6 solutions are 1^11^1, 1^11^2, 1^21^1, 1^21^2, 1^12^1, 1^22^2.
		

Formula

a(n) = 2^n + 2*(B(n)-1), where B(n) is the n-th Bell number.

A209801 The number of partitions of the set [n] where each element can be colored 1 or 2 avoiding the patterns 1^11^2 in the equality sense.

Original entry on oeis.org

1, 2, 7, 30, 152, 878, 5653, 39952, 306419, 2527984, 22277080, 208483014, 2062199125, 21472152822, 234526948183, 2678973711602, 31919113081724, 395750219427590, 5095324584255641, 67996852799627404, 938939425151949211, 13395286474394627364, 197162835188949226772
Offset: 0

Author

Adam Goyt, Mar 13 2012

Keywords

Comments

A partition of the set [n] is a family nonempty disjoint sets whose union is [n]. The blocks are written in order of increasing minima. A partition of the set [n] can be written as a word p=p_1p_2...p_n where p_i=j if element i is in block j. A partition q=q_1q_2...q_n contains partition p=p_1p_2...p_k if there is a subword q_{i_1}q_{i_2}...q_{i_k} such that q_{i_a}

Examples

			For n=2 the a(2)=7 solutions are 1^11^1, 1^21^1, 1^21^2, 1^12^1, 1^12^2, 1^22^1, 1^22^2.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 1, add(
          a(n-j)*binomial(n-1, j-1)*(j+1), j=1..n))
        end:
    seq(a(n), n=0..23);  # Alois P. Heinz, Aug 29 2019
  • Mathematica
    Table[Sum[BellY[n, k, Range[n] + 1], {k, 0, n}], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 09 2016 *)
  • PARI
    {a(n)=n!*polcoeff(exp((1+x)*exp(x +x*O(x^n))-1),n)} \\ Paul D. Hanna, Jun 11 2012

Formula

E.g.f.: exp( (1+x)*exp(x) - 1 ). - Paul D. Hanna, Jun 11 2012
a(n) = Sum_{i=0..n} Sum_{j=0..floor((n-i)/2)} binomial(n, i)*binomial(n-i, j)*(Sum_{p=j..n-i-j} binomial(n-i-j, p)*S(p, j)*j!*B(n-i-j-p)), where B(n) is the n-th Bell number and S(n,k) is the Stirling number of the second kind.
a(n) = Sum_{j=1..n} (j+1) * binomial(n-1,j-1) * a(n-j) for n>0, a(0)=1. - Alois P. Heinz, Aug 29 2019

A209798 The number of partitions of the set [n] where each element can be colored 1 or 2 avoiding the patterns 1^11^2, 1^12^2, and 1^22^1 in the pattern sense.

Original entry on oeis.org

2, 5, 12, 33, 108, 411, 1760, 8287, 42302, 231959, 1357150, 8427205, 55288886, 381798657, 2765917104, 20960284309, 165729739624, 1364153612335, 11665484410132, 103448316470763, 949739632313522, 9013431476894667, 88304011710168714, 891917738589610601
Offset: 1

Author

Adam Goyt, Mar 13 2012

Keywords

Comments

A partition of the set [n] is a family nonempty disjoint sets whose union is [n]. The blocks are written in order of increasing minima. A partition of the set [n] can be written as a word p=p_1p_2...p_n where p_i=j if element i is in block j. A partition q=q_1q_2...q_n contains partition p=p_1p_2...p_k if there is a subword q_{i_1}q_{i_2}...q_{i_k} such that q_{i_a}

Examples

			For n=2 the a(2)=5 solutions are 1^11^1, 1^21^1, 1^21^2, 1^12^1, 1^22^2.
		

Formula

2*B(n)+n-1, where B(n) is the n-th Bell number.

A209797 The number of partitions of the set [n] where each element can be colored 1 or 2 avoiding the patterns 1^11^2 and 1^22^1 in the pattern sense.

Original entry on oeis.org

2, 6, 18, 56, 188, 695, 2838, 12726, 62140, 327760, 1854488, 11189273, 71627546, 484332314, 3446042310, 25712613664, 200599911596, 1632055365951, 13814906940846, 121414108567114, 1105838412755384, 10420517690466168, 101439025287805552, 1018689421191417393
Offset: 1

Author

Adam Goyt, Mar 13 2012

Keywords

Comments

A partition of the set [n] is a family nonempty disjoint sets whose union is [n]. The blocks are written in order of increasing minima. A partition of the set [n] can be written as a word p=p_1p_2...p_n where p_i=j if element i is in block j. A partition q=q_1q_2...q_n contains partition p=p_1p_2...p_k if there is a subword q_{i_1}q_{i_2}...q_{i_k} such that q_{i_a}

Examples

			For n=2 the a(2)=6 solutions are 1^11^1, 1^21^1, 1^21^2, 1^12^1, 1^12^2, 1^22^2.
		

Formula

For n >=2, 2*B(n)+B(n-1)+sum(sum(B(n-j-k), k = 0 .. n-j), j = 2 .. n)+sum(B(j-1)*(B(n-j)+sum((k+binomial(n-j, k))*B(n-j-k), k = 1 .. n-j)), j = 2 .. n-1)

A113485 Number of partitions of [n] avoiding the pattern 12/34.

Original entry on oeis.org

1, 2, 5, 14, 41, 122, 367, 1114, 3423, 10670, 33841, 109398, 361045, 1217346, 4195267, 14775986, 53172411, 195396310, 732806677, 2802898190, 10926431393, 43381582538, 175311002903, 720640632074, 3011495745175, 12786738800254
Offset: 1

Author

Adam Goyt, Jan 09 2006

Keywords

Comments

The first sum in the formula counts those partitions with a single block of size at least 3. The second sum counts those partitions with blocks of size at most 2. It's easy to see that to avoid 12/34 a partition cannot contain more than one block of size at least 3.
The elements shown satisfy the hypergeometric recurrence 2*a(n) -10*a(n-1) +(-n+13)*a(n-2) +2*(2*n+1)*a(n-3) +3*(-n-5)*a(n-4) +4*(-n+6)*a(n-5) +4*(n-5)*a(n-6)=0. - R. J. Mathar, Jan 25 2013

Examples

			For n=1,2,3 a(n)=B_n, where B_n is the n-th Bell number, since there aren't enough distinct elements for such a partition to contain a copy of 12/34. By a similar argument a(4)=B_4-1=14.
		

References

  • M. Klazar, Counting Pattern-free Set Partitions I: A Generalization of Stirling Numbers of the Second Kind, Europ. J. Combinatorics, Vol. 21 (2000), pp. 367-378.

Crossrefs

Cf. A084261.

Programs

  • Mathematica
    Table[Sum[Sum[(k+1)^2 Binomial[n, 2k+p] k!, {k, 0, Floor[(n-p)/2]}], {p, 3, n}]+Sum[Binomial[n, 2k] k!, {k, 0, Floor[n/2]}], {n, 1, 31}]
  • PARI
    a(n)=sum(p=3,n, sum(k=0,(n-p)\2, binomial(n,2*k+p)*(k+1)^2*k!)) + sum(k=0,n\2, binomial(n,2*k)) \\ Charles R Greathouse IV, Mar 12 2017

Formula

a(n) = Sum[Sum[(k+1)^2 binomial[n, 2k+p] k!, {k, 0, Floor[(n-p)/2]}], {p, 3, n}] + Sum[binomial[n, 2k] k!, {k, 0, Floor[n/2]}].
From Vaclav Kotesovec, Jun 10 2019: (Start)
Recurrence: 2*(n^2-8*n+13)*a(n) = 2*(4*n^2-31*n+43)*a(n-1) + (n^3-17*n^2+87*n-91)*a(n-2) - (3*n^3-27*n^2+78*n-64)*a(n-3) + 2*(n-3)*(n^2-6*n+6)*a(n-4).
a(n) ~ sqrt(Pi) * exp(sqrt(2*n) - n/2 - 1/2) * n^(n/2 + 1) / 2^(n/2 + 3/2) * (1 + 4*sqrt(2)/(3*sqrt(n))). (End)