A208280 Number of distinct values in n-th row of Pascal's triangle mod 10 (A008975).
1, 1, 2, 2, 3, 3, 4, 3, 4, 4, 4, 4, 6, 6, 4, 3, 4, 5, 6, 5, 5, 6, 7, 9, 3, 3, 4, 4, 5, 6, 4, 2, 4, 5, 4, 5, 5, 7, 7, 9, 5, 5, 7, 8, 8, 6, 6, 10, 7, 4, 4, 4, 6, 7, 6, 4, 5, 7, 7, 10, 6, 7, 6, 5, 6, 6, 6, 8, 7, 8, 7, 8, 7, 9, 5, 4, 5, 6, 7, 6, 5, 5, 6, 7, 7, 6
Offset: 0
Keywords
Examples
Smallest numbers m such that a(m) = n, m = 1,..,9: m | distinct terms in A008975(m,*) | a(m) -----+----------------------------------+------- 0 | [1] | 1 2 | [1, 2] | 2 4 | [1, 4, 6] | 3 6 | [0, 1, 5, 6] | 4 17 | [0, 1, 6, 7, 8] | 5 12 | [0, 1, 2, 4, 5, 6] | 6 22 | [0, 1, 2, 3, 4, 5, 6] | 7 43 | [0, 1, 3, 4, 5, 6, 8, 9] | 8 23 | [0, 1, 3, 4, 5, 6, 7, 8, 9] | 9 47 | [0, 1, 2, 3, 4, 5, 6, 7, 8, 9] | 10
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 0..10000
Programs
-
Haskell
import Data.List (nub) a208280 = length . nub . a008975_row