A208338 Triangle of coefficients of polynomials u(n,x) jointly generated with A208339; see the Formula section.
1, 1, 1, 1, 2, 3, 1, 3, 7, 7, 1, 4, 12, 20, 17, 1, 5, 18, 40, 57, 41, 1, 6, 25, 68, 129, 158, 99, 1, 7, 33, 105, 243, 399, 431, 239, 1, 8, 42, 152, 410, 824, 1200, 1160, 577, 1, 9, 52, 210, 642, 1506, 2692, 3528, 3089, 1393, 1, 10, 63, 280, 952, 2532, 5290
Offset: 1
Examples
First five rows: 1; 1, 1; 1, 2, 3; 1, 3, 7, 7; 1, 4, 12, 20, 17; First five polynomials u(n,x): 1 1 + x 1 + 2x + 3x^2 1 + 3x + 7x^2 + 7x^3 1 + 4x + 12x^2 + 20x^3 + 17x^4 From _Philippe Deléham_, Apr 09 2012: (Start) (1, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, 0, ...) begins: 1; 1, 0; 1, 1, 0; 1, 2, 3, 0; 1, 3, 7, 7, 0; 1, 4, 12, 20, 17, 0; 1, 5, 18, 40, 57, 41, 0; (End)
Crossrefs
Cf. A208339.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208338 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208339 *)
Formula
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 09 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-2*y*x-y^2*x^2)/(1-x-2*y*x+y*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments