cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208338 Triangle of coefficients of polynomials u(n,x) jointly generated with A208339; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 2, 3, 1, 3, 7, 7, 1, 4, 12, 20, 17, 1, 5, 18, 40, 57, 41, 1, 6, 25, 68, 129, 158, 99, 1, 7, 33, 105, 243, 399, 431, 239, 1, 8, 42, 152, 410, 824, 1200, 1160, 577, 1, 9, 52, 210, 642, 1506, 2692, 3528, 3089, 1393, 1, 10, 63, 280, 952, 2532, 5290
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2012

Keywords

Comments

Subtriangle of the triangle given by (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Apr 09 2012

Examples

			First five rows:
  1;
  1,  1;
  1,  2,  3;
  1,  3,  7,  7;
  1,  4, 12, 20, 17;
First five polynomials u(n,x):
  1
  1 +  x
  1 + 2x +  3x^2
  1 + 3x +  7x^2 +  7x^3
  1 + 4x + 12x^2 + 20x^3 + 17x^4
From _Philippe Deléham_, Apr 09 2012: (Start)
(1, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 2, -1, 0, 0, 0, ...) begins:
  1;
  1,  0;
  1,  1,  0;
  1,  2,  3,  0;
  1,  3,  7,  7,  0;
  1,  4, 12, 20, 17,  0;
  1,  5, 18, 40, 57, 41,  0; (End)
		

Crossrefs

Cf. A208339.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := (x + 1)*u[n - 1, x] + 2 x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]   (* A208338 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]   (* A208339 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + 2x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Apr 09 2012: (Start)
As DELTA-triangle T(n,k) with 0 <= k <= n:
G.f.: (1-2*y*x-y^2*x^2)/(1-x-2*y*x+y*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k < 0 or if k > n. (End)