cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208342 Triangle of coefficients of polynomials u(n,x) jointly generated with A208343; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 10, 8, 1, 1, 6, 9, 16, 18, 13, 1, 1, 7, 11, 23, 31, 33, 21, 1, 1, 8, 13, 31, 47, 62, 59, 34, 1, 1, 9, 15, 40, 66, 101, 119, 105, 55, 1, 1, 10, 17, 50, 88, 151, 205, 227, 185, 89, 1, 1, 11, 19, 61, 113, 213, 321, 414
Offset: 1

Views

Author

Clark Kimberling, Feb 25 2012

Keywords

Comments

Coefficient of x^(n-1): A000045(n) (Fibonacci numbers).
n-th row sum: 2^(n-1).
Mirror image of triangle in A053538. - Philippe Deléham, Mar 05 2012
Subtriangle of the triangle T(n,k) given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 12 2012

Examples

			First five rows:
  1
  1, 1
  1, 1, 2
  1, 1, 3, 3
  1, 1, 4, 5, 5
First five polynomials u(n,x): 1, 1 + x, 1 + x + x^2, 1 + x + 3*x^2 + 3*x^3, 1 + x + 4*x^2 + 5*x^3 + 5*x^4.
(1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins:
1
1, 0
1, 1, 0
1, 1, 2,  0
1, 1, 3,  3,  0
1, 1, 4,  5,  5,  0
1, 1, 5,  7, 10,  8,  0
1, 1, 6,  9, 16, 18, 13,  0
1, 1, 7, 11, 23, 31, 33, 21, 0
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 13;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]  (* A208342 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]  (* A208343 *)

Formula

u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = x*u(n-1,x) + x*v(n-1,x),
where u(1,x) = 1, v(1,x) = 1.
T(n,k) = A208747(n,k)/2^k. - Philippe Deléham, Mar 05 2012
From Philippe Deléham, Mar 12 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n:
G.f.: (1-y*x+y*x^2-y^2*x^2)/(1-x-y*x+t*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
O.g.f.: 1/(1 - z - x*z(1 - z + x*z)) = 1 + (1 + x)*z + (1 + x + 2*x^2)*z^2 + (1 + x + 3*x + 3*x^2)*z^3 + .... - Peter Bala, Dec 31 2015
u(n,x) = Sum_{j=1..floor((n+1)/2)} (-1)^(j-1)*binomial(n-j,j-1)*(x*(1-x))^(j-1)* (1+x)^(n+1-2*j) for n>=1. - Werner Schulte, Mar 07 2017
T(n,k) = Sum_{j=0..floor((k-1)/2)} binomial(k-1-j,j)*binomial(n-k+j,j) for k,n>0 and k<=n (conjectured). - Werner Schulte, Mar 07 2017