A208342 Triangle of coefficients of polynomials u(n,x) jointly generated with A208343; see the Formula section.
1, 1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 5, 5, 1, 1, 5, 7, 10, 8, 1, 1, 6, 9, 16, 18, 13, 1, 1, 7, 11, 23, 31, 33, 21, 1, 1, 8, 13, 31, 47, 62, 59, 34, 1, 1, 9, 15, 40, 66, 101, 119, 105, 55, 1, 1, 10, 17, 50, 88, 151, 205, 227, 185, 89, 1, 1, 11, 19, 61, 113, 213, 321, 414
Offset: 1
Examples
First five rows: 1 1, 1 1, 1, 2 1, 1, 3, 3 1, 1, 4, 5, 5 First five polynomials u(n,x): 1, 1 + x, 1 + x + x^2, 1 + x + 3*x^2 + 3*x^3, 1 + x + 4*x^2 + 5*x^3 + 5*x^4. (1, 0, -1, 1, 0, 0, ...) DELTA (0, 1, 1, -1, 0, 0, ...) begins: 1 1, 0 1, 1, 0 1, 1, 2, 0 1, 1, 3, 3, 0 1, 1, 4, 5, 5, 0 1, 1, 5, 7, 10, 8, 0 1, 1, 6, 9, 16, 18, 13, 0 1, 1, 7, 11, 23, 31, 33, 21, 0
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 13; u[n_, x_] := u[n - 1, x] + x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208342 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208343 *)
Formula
u(n,x) = u(n-1,x) + x*v(n-1,x),
v(n,x) = x*u(n-1,x) + x*v(n-1,x),
where u(1,x) = 1, v(1,x) = 1.
T(n,k) = A208747(n,k)/2^k. - Philippe Deléham, Mar 05 2012
From Philippe Deléham, Mar 12 2012: (Start)
As DELTA-triangle T(n,k) with 0<=k<=n:
G.f.: (1-y*x+y*x^2-y^2*x^2)/(1-x-y*x+t*x^2-y^2*x^2).
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + T(n-2,k-2), T(0,0) = T(1,0) = T(2,0) = T(2,1) = 1, T(1,1) = T(2,2) = 0 and T(n,k) = 0 if k<0 or if k>n. (End)
O.g.f.: 1/(1 - z - x*z(1 - z + x*z)) = 1 + (1 + x)*z + (1 + x + 2*x^2)*z^2 + (1 + x + 3*x + 3*x^2)*z^3 + .... - Peter Bala, Dec 31 2015
u(n,x) = Sum_{j=1..floor((n+1)/2)} (-1)^(j-1)*binomial(n-j,j-1)*(x*(1-x))^(j-1)* (1+x)^(n+1-2*j) for n>=1. - Werner Schulte, Mar 07 2017
T(n,k) = Sum_{j=0..floor((k-1)/2)} binomial(k-1-j,j)*binomial(n-k+j,j) for k,n>0 and k<=n (conjectured). - Werner Schulte, Mar 07 2017
Comments