A208428 Number of n X 2 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
2, 14, 54, 216, 864, 3456, 13824, 55296, 221184, 884736, 3538944, 14155776, 56623104, 226492416, 905969664, 3623878656, 14495514624, 57982058496, 231928233984, 927712935936, 3710851743744, 14843406974976, 59373627899904
Offset: 1
Keywords
Examples
Some solutions for n=4: ..0..0....0..0....0..0....0..1....0..0....0..0....0..1....0..0....0..0....0..0 ..1..1....0..0....1..1....2..1....1..2....0..0....0..2....0..1....1..1....0..0 ..1..1....1..2....1..2....2..1....1..2....1..2....2..2....2..1....2..1....1..1 ..2..0....1..2....2..2....0..1....0..0....2..2....0..1....2..1....0..2....1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
- Index entries for linear recurrences with constant coefficients, signature (4).
Crossrefs
Cf. A208434.
Formula
Empirical: a(n) = 4*a(n-1) for n>3.
Conjectures from Colin Barker, Feb 23 2018: (Start)
G.f.: 2*x*(1 + 3*x - x^2) / (1 - 4*x).
a(n) = 27*2^(2*n - 5) for n>2.
(End)
Comments