cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A275565 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,0) (-1,2) or (0,-2) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 2, 3, 14, 3, 6, 36, 54, 6, 12, 96, 126, 216, 12, 24, 288, 294, 504, 864, 24, 48, 864, 672, 1176, 1872, 3456, 48, 96, 2592, 1536, 3192, 4056, 7200, 13824, 96, 192, 7776, 3552, 8664, 13104, 15000, 27360, 55296, 192, 384, 23328, 8214, 23712, 42336, 57600
Offset: 1

Views

Author

R. H. Hardin, Aug 01 2016

Keywords

Comments

Table starts
...1......2.......3.......6.......12........24.........48..........96
...2.....14......36......96......288.......864.......2592........7776
...3.....54.....126.....294......672......1536.......3552........8214
...6....216.....504....1176.....3192......8664......23712.......64896
..12....864....1872....4056....13104.....42336.....138600......453750
..24...3456....7200...15000....57600....221184.....867456.....3402054
..48..13824...27360...54150...248520...1140576....5360184....25190406
..96..55296..104256..196566..1075140...5880600...33275880...188294424
.192.221184..397440..714150..4663710..30456054..206892990..1405458150
.384.884736.1513728.2589894.20186982.157347846.1286374716.10516571736

Examples

			Some solutions for n=4 k=4
..0..1..2..2. .0..1..1..2. .0..1..2..2. .0..1..2..0. .0..1..2..0
..1..0..0..1. .0..1..2..0. .1..0..0..2. .0..1..1..2. .1..1..2..2
..2..2..1..1. .1..2..2..1. .1..0..0..1. .2..0..1..1. .1..0..0..2
..2..2..1..0. .1..0..0..1. .2..2..1..1. .2..2..0..1. .2..0..0..1
		

Crossrefs

Column 1 is A003945(n-2).
Column 2 is A208428.
Row 1 is A003945(n-2).

Formula

Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>3
k=2: a(n) = 4*a(n-1) for n>3
k=3: a(n) = 2*a(n-1) +8*a(n-2) -16*a(n-4) for n>5
k=4: [order 10] for n>11
k=5: [order 32] for n>34
k=6: [order 35] for n>37
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>3
n=2: a(n) = 3*a(n-1) for n>4
n=3: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +7*a(n-5) -5*a(n-6) +2*a(n-8) -a(n-9) for n>10
n=4: [order 25] for n>28
n=5: [order 63] for n>66

A275352 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,-1) (-2,1) or (-1,-2) and new values introduced in order 0..2.

Original entry on oeis.org

1, 2, 2, 5, 14, 5, 14, 81, 54, 14, 41, 486, 288, 216, 41, 122, 2916, 1536, 1024, 864, 122, 365, 17496, 8192, 6156, 4100, 3456, 365, 1094, 104976, 43712, 38256, 31536, 16956, 13824, 1094, 3281, 629856, 235072, 239112, 266116, 175152, 70272, 55296, 3281
Offset: 1

Views

Author

R. H. Hardin, Jul 24 2016

Keywords

Comments

Table starts
....1......2.......5........14..........41..........122............365
....2.....14......81.......486........2916........17496.........104976
....5.....54.....288......1536........8192........43712.........235072
...14....216....1024......6156.......38256.......239112........1530060
...41....864....4100.....31536......266116......2292520.......20917472
..122...3456...16956....175152.....2130176.....26615196......351504904
..365..13824...70272....982152....17258544....306863916.....5814135340
.1094..55296..291320...5645376...142784608...3682615020...101593710948
.3281.221184.1211092..33154200..1211010160..45094867336..1804283175916
.9842.884736.5070832.197081664.10285035212.548546009720.31575745629020

Examples

			Some solutions for n=4 k=4
..0..1..0..2. .0..1..1..2. .0..1..0..0. .0..1..1..1. .0..1..2..1
..1..0..1..0. .2..2..2..0. .1..2..2..0. .1..2..2..0. .0..2..1..2
..0..2..0..1. .0..2..0..0. .2..2..2..1. .2..2..0..0. .0..1..2..0
..2..2..1..0. .0..1..1..1. .0..0..1..1. .0..0..1..1. .0..2..1..0
		

Crossrefs

Column 1 is A007051(n-1).
Column 2 is A208428.
Row 1 is A007051(n-1).

Formula

Empirical for column k:
k=1: a(n) = 4*a(n-1) -3*a(n-2)
k=2: a(n) = 4*a(n-1) for n>3
k=3: [order 17] for n>20
Empirical for row n:
n=1: a(n) = 4*a(n-1) -3*a(n-2)
n=2: a(n) = 6*a(n-1) for n>3
n=3: [order 18] for n>20
n=4: [order 41] for n>43
Showing 1-2 of 2 results.