A275565 T(n,k)=Number of nXk 0..2 arrays with no element equal to any value at offset (-2,0) (-1,2) or (0,-2) and new values introduced in order 0..2.
1, 2, 2, 3, 14, 3, 6, 36, 54, 6, 12, 96, 126, 216, 12, 24, 288, 294, 504, 864, 24, 48, 864, 672, 1176, 1872, 3456, 48, 96, 2592, 1536, 3192, 4056, 7200, 13824, 96, 192, 7776, 3552, 8664, 13104, 15000, 27360, 55296, 192, 384, 23328, 8214, 23712, 42336, 57600
Offset: 1
Examples
Some solutions for n=4 k=4 ..0..1..2..2. .0..1..1..2. .0..1..2..2. .0..1..2..0. .0..1..2..0 ..1..0..0..1. .0..1..2..0. .1..0..0..2. .0..1..1..2. .1..1..2..2 ..2..2..1..1. .1..2..2..1. .1..0..0..1. .2..0..1..1. .1..0..0..2 ..2..2..1..0. .1..0..0..1. .2..2..1..1. .2..2..0..1. .2..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..286
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1) for n>3
k=2: a(n) = 4*a(n-1) for n>3
k=3: a(n) = 2*a(n-1) +8*a(n-2) -16*a(n-4) for n>5
k=4: [order 10] for n>11
k=5: [order 32] for n>34
k=6: [order 35] for n>37
Empirical for row n:
n=1: a(n) = 2*a(n-1) for n>3
n=2: a(n) = 3*a(n-1) for n>4
n=3: a(n) = 3*a(n-1) -5*a(n-3) +a(n-4) +7*a(n-5) -5*a(n-6) +2*a(n-8) -a(n-9) for n>10
n=4: [order 25] for n>28
n=5: [order 63] for n>66
Comments