cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A208001 T(n,k)=Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 2, 2, 5, 15, 5, 15, 114, 114, 15, 52, 1657, 4141, 1657, 52, 203, 36401, 426422, 426422, 36401, 203, 877, 1094076, 86545486, 450288795, 86545486, 1094076, 877, 4140, 42436913, 29169661126, 1182700979380, 1182700979380, 29169661126, 42436913, 4140
Offset: 1

Views

Author

R. H. Hardin, Feb 22 2012

Keywords

Examples

			Table starts
....1........2...........5............15............52.........203
....2.......15.........114..........1657.........36401.....1094076
....5......114........4141........426422......86545486.29169661126
...15.....1657......426422.....450288795.1182700979380
...52....36401....86545486.1182700979380
..203..1094076.29169661126
..877.42436913
.4140
...
Some solutions for n=4 k=3
..0..0..0....0..0..0....0..0..0....0..1..0....0..0..1....0..0..0....0..0..0
..1..0..1....1..2..1....1..0..1....1..0..1....0..0..1....1..0..1....1..0..1
..2..1..2....2..1..2....2..1..2....0..1..2....2..2..1....2..1..2....2..2..2
..1..0..3....3..0..0....1..0..1....1..2..1....2..3..1....1..2..1....1..0..1
		

Crossrefs

Columns 1..4 are A000110, A207998, A207999, A208000.
Main diagonal is A361453.
Cf. A208434 (3 colorings), A208353 (4 colorings).
Cf. A207868 (grid graph).

A208428 Number of n X 2 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

2, 14, 54, 216, 864, 3456, 13824, 55296, 221184, 884736, 3538944, 14155776, 56623104, 226492416, 905969664, 3623878656, 14495514624, 57982058496, 231928233984, 927712935936, 3710851743744, 14843406974976, 59373627899904
Offset: 1

Views

Author

R. H. Hardin, Feb 26 2012

Keywords

Comments

Column 2 of A208434.

Examples

			Some solutions for n=4:
..0..0....0..0....0..0....0..1....0..0....0..0....0..1....0..0....0..0....0..0
..1..1....0..0....1..1....2..1....1..2....0..0....0..2....0..1....1..1....0..0
..1..1....1..2....1..2....2..1....1..2....1..2....2..2....2..1....2..1....1..1
..2..0....1..2....2..2....0..1....0..0....2..2....0..1....2..1....0..2....1..1
		

Crossrefs

Cf. A208434.

Formula

Empirical: a(n) = 4*a(n-1) for n>3.
Conjectures from Colin Barker, Feb 23 2018: (Start)
G.f.: 2*x*(1 + 3*x - x^2) / (1 - 4*x).
a(n) = 27*2^(2*n - 5) for n>2.
(End)

A208429 Number of nX3 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

5, 54, 129, 339, 1123, 4155, 15273, 55715, 205199, 758647, 2804053, 10360467, 38311103, 141717367, 524247989, 1939302323, 7174276855, 26541315667, 98190495765, 363259275051, 1343896481903, 4971825005443, 18393576694105
Offset: 1

Views

Author

R. H. Hardin Feb 26 2012

Keywords

Comments

Column 3 of A208434

Examples

			Some solutions for n=4
..0..1..0....0..1..2....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
..2..1..2....1..2..1....1..1..1....1..2..1....1..1..2....0..0..2....1..0..2
..0..1..0....0..1..0....2..1..2....2..2..2....1..2..2....1..2..2....1..1..2
..2..1..2....1..0..1....0..2..0....0..0..0....0..0..2....1..1..2....1..0..2
		

Formula

Empirical: a(n) = 3*a(n-1) +8*a(n-2) -18*a(n-3) -17*a(n-5) -116*a(n-6) +256*a(n-7) +184*a(n-8) -335*a(n-9) +260*a(n-10) -644*a(n-11) -368*a(n-12) +2013*a(n-13) -564*a(n-14) -1664*a(n-15) -1063*a(n-16) +1284*a(n-17) +3156*a(n-18) -1962*a(n-19) -256*a(n-20) +1020*a(n-21) -1448*a(n-22) -96*a(n-23) +144*a(n-24) +352*a(n-25) -128*a(n-26) for n>28

A208430 Number of nX4 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

14, 216, 339, 1292, 6416, 32813, 169899, 885540, 4617014, 24074947, 125562891, 654899967, 3415879346, 17817085346, 92933586111, 484741782266, 2528419901343, 13188283797088, 68790359883448, 358812044639010, 1871571851010931
Offset: 1

Views

Author

R. H. Hardin Feb 26 2012

Keywords

Comments

Column 4 of A208434

Examples

			Some solutions for n=4
..0..0..0..0....0..0..0..1....0..0..0..1....0..0..1..2....0..0..0..1
..1..2..2..2....1..2..1..1....1..2..1..1....0..1..1..1....1..2..1..1
..1..1..2..1....2..2..2..1....2..2..2..1....2..2..1..0....2..2..2..1
..1..0..0..0....1..0..0..0....0..2..0..0....0..2..0..0....1..2..0..0
		

Formula

Empirical: a(n) = 7*a(n-1) -6*a(n-2) -11*a(n-3) -36*a(n-4) -39*a(n-5) +276*a(n-6) +153*a(n-7) -71*a(n-8) -518*a(n-9) -1682*a(n-10) +1463*a(n-11) +2788*a(n-12) -2181*a(n-13) -273*a(n-14) +1238*a(n-15) -2067*a(n-16) +301*a(n-17) +1071*a(n-18) -635*a(n-19) +133*a(n-20) +286*a(n-21) -194*a(n-22) -38*a(n-23) +80*a(n-24) -46*a(n-25) -14*a(n-26) +20*a(n-27) -4*a(n-28) for n>34

A208431 Number of nX5 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

41, 864, 1123, 6416, 50507, 365195, 2623167, 19281232, 141789341, 1037399092, 7598755762, 55697097923, 408217653315, 2991035581961, 21919561041622, 160626736704557, 1177121839740932, 8625904039667696, 63212673380523055
Offset: 1

Views

Author

R. H. Hardin Feb 26 2012

Keywords

Comments

Column 5 of A208434

Examples

			Some solutions for n=4
..0..0..1..1..1....0..0..0..0..1....0..1..0..2..1....0..1..2..1..0
..0..0..2..1..0....2..1..2..2..2....2..0..2..2..1....0..2..1..2..0
..1..2..2..2..0....1..1..1..2..1....0..1..0..2..0....2..1..2..1..0
..1..1..2..1..0....2..0..0..0..0....1..0..1..0..1....1..2..1..2..1
		

Formula

Empirical: a(n) = 8*a(n-1) +17*a(n-2) -201*a(n-3) +448*a(n-4) -1627*a(n-5) +1693*a(n-6) +22432*a(n-7) -60066*a(n-8) +45696*a(n-9) +32264*a(n-10) -697137*a(n-11) +1671442*a(n-12) -378862*a(n-13) -2203329*a(n-14) +8634970*a(n-15) -17270425*a(n-16) +2222078*a(n-17) +16804877*a(n-18) -40251356*a(n-19) +104103432*a(n-20) -64341121*a(n-21) -37339570*a(n-22) +110797160*a(n-23) -350390806*a(n-24) +352758000*a(n-25) -4026468*a(n-26) -221511112*a(n-27) +581590756*a(n-28) -647331256*a(n-29) +39507416*a(n-30) +335397720*a(n-31) -417266928*a(n-32) +342507344*a(n-33) +68614176*a(n-34) -240816608*a(n-35) +52389024*a(n-36) +43953792*a(n-37) -21497088*a(n-38) +4329216*a(n-39) +746496*a(n-40) -746496*a(n-41) for n>45

A208432 Number of nX6 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

122, 3456, 4155, 32813, 365195, 3673572, 36422648, 371453021, 3793404050, 38533409422, 391811506309, 3988721278761, 40593813655965, 413056518517661, 4203452149533013, 42777575164793479, 435327190739395292
Offset: 1

Views

Author

R. H. Hardin Feb 26 2012

Keywords

Comments

Column 6 of A208434

Examples

			Some solutions for n=4
..0..1..0..1..1..2....0..1..1..0..1..2....0..0..0..0..0..0....0..1..2..1..1..1
..1..0..2..0..2..0....0..1..2..0..0..2....1..2..1..1..1..2....0..2..2..0..1..2
..0..2..0..2..0..2....0..2..2..0..1..2....2..2..2..1..2..2....0..1..2..0..0..2
..1..0..2..1..2..0....0..1..2..1..1..2....1..2..0..0..0..2....0..1..1..0..1..2
		

A208433 Number of nX7 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

365, 13824, 15273, 169899, 2623167, 36422648, 509698666, 7308976236, 104548902187, 1491128667703, 21311956695888, 304671374144232, 4354902558505404, 62240469327888568, 889738186413603234
Offset: 1

Views

Author

R. H. Hardin Feb 26 2012

Keywords

Comments

Column 7 of A208434

Examples

			Some solutions for n=4
..0..1..0..1..1..1..0....0..0..0..0..1..2..0....0..1..2..0..2..0..2
..2..0..2..0..1..0..2....2..1..2..1..2..1..2....0..1..1..2..0..1..1
..0..1..0..2..0..2..0....1..2..1..2..1..2..1....2..1..2..0..2..0..2
..2..0..2..0..1..0..1....2..1..2..0..2..0..2....0..2..0..2..0..2..0
		

A208427 Number of n X n 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).

Original entry on oeis.org

1, 14, 129, 1292, 50507, 3673572, 509698666, 148054300100, 84623199773631, 95553867727723732
Offset: 1

Views

Author

R. H. Hardin Feb 26 2012

Keywords

Comments

Diagonal of A208434.

Examples

			Some solutions for n=4
..0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..2....0..0..0..1
..1..2..1..1....1..2..1..1....1..0..1..2....0..1..1..1....1..2..1..1
..2..2..2..1....2..2..2..1....2..1..2..1....2..2..1..0....2..2..2..1
..1..2..0..0....1..0..0..0....1..2..1..0....0..2..0..0....0..2..0..0
		

Crossrefs

Cf. A208434.
Showing 1-8 of 8 results.