A208001
T(n,k)=Number of n X k nonnegative integer arrays with new values 0 upwards introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
1, 2, 2, 5, 15, 5, 15, 114, 114, 15, 52, 1657, 4141, 1657, 52, 203, 36401, 426422, 426422, 36401, 203, 877, 1094076, 86545486, 450288795, 86545486, 1094076, 877, 4140, 42436913, 29169661126, 1182700979380, 1182700979380, 29169661126, 42436913, 4140
Offset: 1
Table starts
....1........2...........5............15............52.........203
....2.......15.........114..........1657.........36401.....1094076
....5......114........4141........426422......86545486.29169661126
...15.....1657......426422.....450288795.1182700979380
...52....36401....86545486.1182700979380
..203..1094076.29169661126
..877.42436913
.4140
...
Some solutions for n=4 k=3
..0..0..0....0..0..0....0..0..0....0..1..0....0..0..1....0..0..0....0..0..0
..1..0..1....1..2..1....1..0..1....1..0..1....0..0..1....1..0..1....1..0..1
..2..1..2....2..1..2....2..1..2....0..1..2....2..2..1....2..1..2....2..2..2
..1..0..3....3..0..0....1..0..1....1..2..1....2..3..1....1..2..1....1..0..1
A208428
Number of n X 2 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
2, 14, 54, 216, 864, 3456, 13824, 55296, 221184, 884736, 3538944, 14155776, 56623104, 226492416, 905969664, 3623878656, 14495514624, 57982058496, 231928233984, 927712935936, 3710851743744, 14843406974976, 59373627899904
Offset: 1
Some solutions for n=4:
..0..0....0..0....0..0....0..1....0..0....0..0....0..1....0..0....0..0....0..0
..1..1....0..0....1..1....2..1....1..2....0..0....0..2....0..1....1..1....0..0
..1..1....1..2....1..2....2..1....1..2....1..2....2..2....2..1....2..1....1..1
..2..0....1..2....2..2....0..1....0..0....2..2....0..1....2..1....0..2....1..1
A208429
Number of nX3 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
5, 54, 129, 339, 1123, 4155, 15273, 55715, 205199, 758647, 2804053, 10360467, 38311103, 141717367, 524247989, 1939302323, 7174276855, 26541315667, 98190495765, 363259275051, 1343896481903, 4971825005443, 18393576694105
Offset: 1
Some solutions for n=4
..0..1..0....0..1..2....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
..2..1..2....1..2..1....1..1..1....1..2..1....1..1..2....0..0..2....1..0..2
..0..1..0....0..1..0....2..1..2....2..2..2....1..2..2....1..2..2....1..1..2
..2..1..2....1..0..1....0..2..0....0..0..0....0..0..2....1..1..2....1..0..2
A208430
Number of nX4 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
14, 216, 339, 1292, 6416, 32813, 169899, 885540, 4617014, 24074947, 125562891, 654899967, 3415879346, 17817085346, 92933586111, 484741782266, 2528419901343, 13188283797088, 68790359883448, 358812044639010, 1871571851010931
Offset: 1
Some solutions for n=4
..0..0..0..0....0..0..0..1....0..0..0..1....0..0..1..2....0..0..0..1
..1..2..2..2....1..2..1..1....1..2..1..1....0..1..1..1....1..2..1..1
..1..1..2..1....2..2..2..1....2..2..2..1....2..2..1..0....2..2..2..1
..1..0..0..0....1..0..0..0....0..2..0..0....0..2..0..0....1..2..0..0
A208431
Number of nX5 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
41, 864, 1123, 6416, 50507, 365195, 2623167, 19281232, 141789341, 1037399092, 7598755762, 55697097923, 408217653315, 2991035581961, 21919561041622, 160626736704557, 1177121839740932, 8625904039667696, 63212673380523055
Offset: 1
Some solutions for n=4
..0..0..1..1..1....0..0..0..0..1....0..1..0..2..1....0..1..2..1..0
..0..0..2..1..0....2..1..2..2..2....2..0..2..2..1....0..2..1..2..0
..1..2..2..2..0....1..1..1..2..1....0..1..0..2..0....2..1..2..1..0
..1..1..2..1..0....2..0..0..0..0....1..0..1..0..1....1..2..1..2..1
A208432
Number of nX6 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
122, 3456, 4155, 32813, 365195, 3673572, 36422648, 371453021, 3793404050, 38533409422, 391811506309, 3988721278761, 40593813655965, 413056518517661, 4203452149533013, 42777575164793479, 435327190739395292
Offset: 1
Some solutions for n=4
..0..1..0..1..1..2....0..1..1..0..1..2....0..0..0..0..0..0....0..1..2..1..1..1
..1..0..2..0..2..0....0..1..2..0..0..2....1..2..1..1..1..2....0..2..2..0..1..2
..0..2..0..2..0..2....0..2..2..0..1..2....2..2..2..1..2..2....0..1..2..0..0..2
..1..0..2..1..2..0....0..1..2..1..1..2....1..2..0..0..0..2....0..1..1..0..1..2
A208433
Number of nX7 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
365, 13824, 15273, 169899, 2623167, 36422648, 509698666, 7308976236, 104548902187, 1491128667703, 21311956695888, 304671374144232, 4354902558505404, 62240469327888568, 889738186413603234
Offset: 1
Some solutions for n=4
..0..1..0..1..1..1..0....0..0..0..0..1..2..0....0..1..2..0..2..0..2
..2..0..2..0..1..0..2....2..1..2..1..2..1..2....0..1..1..2..0..1..1
..0..1..0..2..0..2..0....1..2..1..2..1..2..1....2..1..2..0..2..0..2
..2..0..2..0..1..0..1....2..1..2..0..2..0..2....0..2..0..2..0..2..0
A208427
Number of n X n 0..2 arrays with new values 0..2 introduced in row major order and no element equal to any knight-move neighbor (colorings ignoring permutations of colors).
Original entry on oeis.org
1, 14, 129, 1292, 50507, 3673572, 509698666, 148054300100, 84623199773631, 95553867727723732
Offset: 1
Some solutions for n=4
..0..0..0..1....0..0..0..1....0..0..0..1....0..0..1..2....0..0..0..1
..1..2..1..1....1..2..1..1....1..0..1..2....0..1..1..1....1..2..1..1
..2..2..2..1....2..2..2..1....2..1..2..1....2..2..1..0....2..2..2..1
..1..2..0..0....1..0..0..0....1..2..1..0....0..2..0..0....0..2..0..0
Showing 1-8 of 8 results.
Comments