cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208474 Sum of the sizes of the Durfee squares of all partitions of n that do not contain 1 as a part, but with a(1) = 1.

Original entry on oeis.org

1, 1, 1, 3, 3, 7, 7, 13, 16, 24, 30, 46, 55, 79, 100, 136, 169, 229, 282, 374, 462, 598, 737, 947, 1158, 1466, 1794, 2246, 2733, 3399, 4116, 5076, 6133, 7503, 9033, 10993, 13177, 15943, 19061, 22939, 27327, 32749, 38883, 46395, 54938, 65278, 77070, 91270
Offset: 1

Views

Author

Omar E. Pol, Mar 03 2012

Keywords

Comments

Also sum of the sizes of the Durfee squares of all partitions of the head of the last section of n (see A135010).

Crossrefs

First differences of A115995.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1,
          `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i))))
        end:
    g:= proc(n) option remember;
          add(add(b(k, d)*b(n-d^2-k, d),
                  k=0..n-d^2)*d, d=1..floor(sqrt(n)))
        end:
    a:= n-> g(n)-g(n-1):
    seq(a(n), n=1..70);  # Alois P. Heinz, Apr 09 2012
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; g[n_] := Sum[Sum[b[k, d]*b[n-d^2-k, d], {k, 0, n-d^2}]*d, {d, 1, Sqrt[n]}]; Table[g[n], {n, 0, 70}] // Differences (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)

Formula

a(n) ~ log(2) * exp(Pi*sqrt(2*n/3)) / (4*n*sqrt(3)). - Vaclav Kotesovec, Jan 03 2019