A208483 Total sum of the sums of all positive k-th ranks of all partitions of n.
0, 2, 4, 8, 14, 26, 40, 68, 100, 156, 224, 334, 466, 668, 920, 1278, 1726, 2356, 3130, 4190, 5508, 7254, 9422, 12268, 15764, 20284, 25852, 32934, 41616, 52578, 65938, 82648, 102976, 128144, 158660, 196222, 241534, 296946, 363632, 444650, 541794, 659268, 799606
Offset: 1
Keywords
Examples
For n = 4 the partitions of 4 and the four types of ranks of the partitions of 4 are ---------------------------------------------------------- Partitions First Second Third Fourth of 4 rank rank rank rank ---------------------------------------------------------- 4 4-1 = 3 0-1 = -1 0-1 = -1 0-1 = -1 3+1 3-2 = 1 1-1 = 0 0-1 = -1 0-0 = 0 2+2 2-2 = 0 2-2 = 0 0-0 = 0 0-0 = 0 2+1+1 2-3 = -1 1-1 = 0 1-0 = 1 0-0 = 0 1+1+1+1 1-4 = -3 1-0 = 1 1-0 = 1 1-0 = 1 ---------------------------------------------------------- The sums of positive k-th ranks of the partitions of 4 are 4, 1, 2, 1 so the total sum is a(4) = 4+1+2+1 = 8.
Extensions
More terms from Alois P. Heinz, Mar 11 2012
Comments