cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208514 Triangle of coefficients of polynomials u(n,x) jointly generated with A208515; see the Formula section.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 1, 3, 4, 3, 1, 4, 6, 7, 5, 1, 5, 8, 12, 13, 8, 1, 6, 10, 18, 24, 23, 13, 1, 7, 12, 25, 38, 46, 41, 21, 1, 8, 14, 33, 55, 78, 88, 72, 34, 1, 9, 16, 42, 75, 120, 158, 165, 126, 55, 1, 10, 18, 52, 98, 173, 255, 313, 307, 219, 89, 1, 11, 20, 63, 124, 238
Offset: 1

Views

Author

Clark Kimberling, Feb 28 2012

Keywords

Comments

u(n,n) = Fibonacci(n), A000045
u(n+1,n) = A208354(n)
col 1: A000012
col 2: A000027
col 3: A005843
col 4: A055998
col 5: A140090

Examples

			First five rows:
1
1...1
1...2...2
1...3...4...3
1...4...6...7...5
First five polynomials u(n,x):
1
1 + x
1 + 2x + 2x^2
1 + 3x + 4x^2 + 3x^3
1 + 4x + 6x^2 + 7x^3 + 5x^4
		

Crossrefs

Cf. A208515.

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x] + 1;
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208514 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208515 *)

Formula

u(n,x)=u(n-1,x)+x*v(n-1,x),
v(n,x)=x*u(n-1,x)+x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.