A208538 Number of n-bead necklaces of n colors allowing reversal, with no adjacent beads having the same color.
1, 1, 1, 21, 102, 1505, 19995, 365260, 7456596, 174489813, 4545454545, 130773238871, 4115123283810, 140620807064413, 5185603185296625, 205262771447683860, 8680820740569200760, 390641235316599920745, 18637772246193096746253, 939749336469457562916217
Offset: 1
Keywords
Examples
All solutions for n=4: ..1....1....1....1....2....1....1....1....2....1....1....3....2....2....1....1 ..2....4....3....2....3....2....3....3....4....3....2....4....3....4....2....2 ..4....2....2....3....2....4....1....4....2....2....1....3....2....3....1....1 ..2....4....4....2....3....3....3....3....4....3....3....4....4....4....2....4 .. ..1....1....2....1....1 ..3....4....3....2....4 ..1....3....4....3....1 ..4....4....3....4....4
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..80
Crossrefs
Diagonal of A208544.
Programs
-
Mathematica
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, n]; Array[a, 20] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
Formula
a(2n+1) = A208533(2n+1)/2 for n > 0, a(2n) = (A208533(2n) + n*(2n-1)^n)/2. - Andrew Howroyd, Mar 12 2017
Extensions
a(12)-a(20) from Andrew Howroyd, Mar 12 2017