cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208543 Number of n-bead necklaces of 7 colors allowing reversal, with no adjacent beads having the same color.

Original entry on oeis.org

7, 21, 35, 231, 777, 4291, 19995, 107331, 559895, 3037314, 16490775, 90782986, 502334385, 2799220041, 15672833365, 88162676511, 497842924845, 2821127825971, 16035782631855, 91404068329560, 522308348593785, 2991403003191771, 17168048327252235, 98716281736491076
Offset: 1

Views

Author

R. H. Hardin, Feb 27 2012

Keywords

Examples

			All solutions for n=3:
..1....1....5....2....1....3....1....4....1....3....3....1....1....2....3....2
..6....3....6....6....4....6....3....5....3....5....4....4....2....5....5....3
..7....6....7....7....7....7....4....6....7....7....5....6....4....6....6....4
..
..1....1....3....1....1....1....2....4....2....4....1....2....1....1....3....2
..2....2....4....2....2....4....4....6....5....5....5....4....5....3....4....3
..6....5....7....7....3....5....6....7....7....7....6....5....7....5....6....7
..
..2....2....2
..3....3....4
..6....5....7
		

Crossrefs

Column 7 of A208544.

Programs

  • Mathematica
    T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 7]; Array[a, 24] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Extensions

a(18)-a(24) from Andrew Howroyd, Mar 12 2017