A208543 Number of n-bead necklaces of 7 colors allowing reversal, with no adjacent beads having the same color.
7, 21, 35, 231, 777, 4291, 19995, 107331, 559895, 3037314, 16490775, 90782986, 502334385, 2799220041, 15672833365, 88162676511, 497842924845, 2821127825971, 16035782631855, 91404068329560, 522308348593785, 2991403003191771, 17168048327252235, 98716281736491076
Offset: 1
Keywords
Examples
All solutions for n=3: ..1....1....5....2....1....3....1....4....1....3....3....1....1....2....3....2 ..6....3....6....6....4....6....3....5....3....5....4....4....2....5....5....3 ..7....6....7....7....7....7....4....6....7....7....5....6....4....6....6....4 .. ..1....1....3....1....1....1....2....4....2....4....1....2....1....1....3....2 ..2....2....4....2....2....4....4....6....5....5....5....4....5....3....4....3 ..6....5....7....7....3....5....6....7....7....7....6....5....7....5....6....7 .. ..2....2....2 ..3....3....4 ..6....5....7
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Column 7 of A208544.
Programs
-
Mathematica
T[n_, k_] := If[n == 1, k, (DivisorSum[n, EulerPhi[n/#]*(k - 1)^# &]/n + If[OddQ[n], 1 - k, k*(k - 1)^(n/2)/2])/2]; a[n_] = T[n, 7]; Array[a, 24] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
Extensions
a(18)-a(24) from Andrew Howroyd, Mar 12 2017