cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208576 Multiplicative persistence of n in factorial base.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 2, 1, 2
Offset: 0

Views

Author

Keywords

Comments

Diamond and Reidpath prove that a(2n) = 1 for n > 0, a(n) = 2 if n is contains an even digit but no 0's in its factorial base representation. If a(n) > 2 then 3 | n.
Further modular properties can be easily proved. For example, a(n) > 2 implies that n is 33, 45, 81, or 93 mod 120.

Crossrefs

Programs

  • PARI
    pr(n)=my(k=1,s=1);while(n,s*=n%k++;n\=k);s
    a(n)=my(t);while(n>1,t++;n=pr(n));t

Formula

a(0) = a(1) = 0; for n > 1, a(n) = 1 + a(A208575(n)). - Antti Karttunen, Nov 14 2018