cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208592 Number of n-bead necklaces labeled with numbers -3..3 not allowing reversal, with sum zero.

Original entry on oeis.org

1, 4, 13, 60, 291, 1564, 8671, 49852, 292927, 1753964, 10656757, 65549844, 407347747, 2553684852, 16130539053, 102563204892, 655918173287, 4216358457772, 27227967629683, 176554882805940, 1149099219084877, 7504110622072860, 49155856119036993, 322903351882566436
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			All solutions for n=3:
.-2...-1...-3...-3...-1...-2...-3...-2...-3...-2...-2...-1....0
..1....0....2....1....1....0....0....3....3...-1....2...-1....0
..1....1....1....2....0....2....3...-1....0....3....0....2....0
		

Crossrefs

Column 3 of A208597.

Programs

  • Mathematica
    comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}]; a[n_Integer, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2 k + 1, #] &]/n; a[n_] = a[n, 3]; Array[a, 24] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Formula

a(n) = (1/n) * Sum_{d | n} totient(n/d) * A025012(d). - Andrew Howroyd, Mar 02 2017

Extensions

a(20)-a(24) from Andrew Howroyd, Mar 02 2017