cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A208597 T(n,k) = number of n-bead necklaces labeled with numbers -k..k not allowing reversal, with sum zero.

Original entry on oeis.org

1, 1, 2, 1, 3, 3, 1, 4, 7, 6, 1, 5, 13, 23, 11, 1, 6, 21, 60, 77, 26, 1, 7, 31, 125, 291, 297, 57, 1, 8, 43, 226, 791, 1564, 1163, 142, 1, 9, 57, 371, 1761, 5457, 8671, 4783, 351, 1, 10, 73, 568, 3431, 14838, 39019, 49852, 20041, 902, 1, 11, 91, 825, 6077, 34153, 129823
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			Table starts
...1....1.....1......1.......1.......1........1........1........1.........1
...2....3.....4......5.......6.......7........8........9.......10........11
...3....7....13.....21......31......43.......57.......73.......91.......111
...6...23....60....125.....226.....371......568......825.....1150......1551
..11...77...291....791....1761....3431.....6077....10021....15631.....23321
..26..297..1564...5457...14838...34153....69784...130401...227314....374825
..57.1163..8671..39019..129823..353333...833253..1764925..3438877...6267735
.142.4783.49852.288317.1172298.3770475.10259448.24627705.53630854.108036775
		

Crossrefs

Rows 3-7 are A002061(n+1), A208598, A208599, A208600, A208601.
Main diagonal is A208590.

Programs

  • Mathematica
    comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r-1-i*m, k-1]*Binomial[k, i], {i, 0, Floor[(r-k)/m]}]; a[n_, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2k+1, #]&]/n; Table[a[n-k+1, k], {n, 1, 11}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Oct 07 2017, after Andrew Howroyd's PARI code *)
  • PARI
    comps(r,m,k)=sum(i=0,floor((r-k)/m),(-1)^i*binomial(r-1-i*m, k-1)*binomial(k, i));
    a(n,k)=sumdiv(n,d,eulerphi(n/d)*comps(d*(k+1), 2*k+1, d))/n;
    for(n=1,8,for(k=1,10,print1(a(n,k),", ")); print()); \\ Andrew Howroyd, May 16 2017
    
  • Python
    from sympy import binomial, divisors, totient, floor
    def comps(r, m, k): return sum([(-1)**i*binomial(r - 1 - i*m, k - 1)*binomial(k, i) for i in range(floor((r - k)/m) + 1)])
    def a(n, k): return sum([totient(n//d)*comps(d*(k + 1), 2*k + 1, d) for d in divisors(n)])//n
    for n in range(1, 12): print([a(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Nov 07 2017, after PARI code
    
  • R
    require(numbers)
    comps <- function(r, m, k) {
      S <- numeric()
      for (i in 0:floor((r-k)/m)) S <- c(S, (-1)^i*choose(r-1-i*m, k-1)*choose(k, i))
      return(sum(S))
    }
    a <- function(n, k) {
      S <- numeric()
      for (d in divisors(n)) S <- c(S, eulersPhi(n/d)*comps(d*(k+1), 2*k+1, d))
      return(sum(S)/n)
    }
    for (n in 1:11) {
      for (k in 1:n) {
        print(a(k,n-k+1))
      }
    } # Indranil Ghosh, Nov 07 2017, after PARI code

Formula

T(n,k) = Sum_{d|n} phi(n/d) * A201552(d, k). - Andrew Howroyd, Oct 14 2017
Empirical for row n:
n=1: a(k) = 1.
n=2: a(k) = k + 1.
n=3: a(k) = k^2 + k + 1.
n=4: a(k) = (4/3)*k^3 + 2*k^2 + (5/3)*k + 1.
n=5: a(k) = (23/12)*k^4 + (23/6)*k^3 + (37/12)*k^2 + (7/6)*k + 1.
n=6: a(k) = (44/15)*k^5 + (22/3)*k^4 + (23/3)*k^3 + (14/3)*k^2 + (12/5)*k + 1.
n=7: a(k) = (841/180)*k^6 + (841/60)*k^5 + (325/18)*k^4 + (51/4)*k^3 + (949/180)*k^2 + (37/30)*k + 1.
Showing 1-1 of 1 results.