cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208594 Number of n-bead necklaces labeled with numbers -5..5 not allowing reversal, with sum zero.

Original entry on oeis.org

1, 6, 31, 226, 1761, 14838, 129823, 1172298, 10829443, 101888166, 972840341, 9402986626, 91822503449, 904557886854, 8978540544171, 89709076112442, 901536608361003, 9106692124614666, 92411996211470633, 941636535001651066, 9630568821834643189, 98829095219423607906
Offset: 1

Views

Author

R. H. Hardin, Feb 29 2012

Keywords

Examples

			Some solutions for n=4:
.-3...-5...-3...-3...-4...-4...-5...-4...-2...-4...-4...-3...-3...-3...-3...-4
..0....2....1....0....3...-2....2....4....1....3....4....0....5....3....2....0
..3....5....2...-1....1....3...-2...-4....2....0...-1...-2....0...-1....1....4
..0...-2....0....4....0....3....5....4...-1....1....1....5...-2....1....0....0
		

Crossrefs

Column 5 of A208597.

Programs

  • Mathematica
    comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}]; a[n_Integer, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2 k + 1, #] &]/n; a[n_] = a[n, 5]; Array[a, 22] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)

Formula

a(n) = (1/n) * Sum_{d | n} totient(n/d) * A201549(d).

Extensions

a(15)-a(22) from Andrew Howroyd, Mar 02 2017