A208599 Number of 5-bead necklaces labeled with numbers -n..n not allowing reversal, with sum zero.
11, 77, 291, 791, 1761, 3431, 6077, 10021, 15631, 23321, 33551, 46827, 63701, 84771, 110681, 142121, 179827, 224581, 277211, 338591, 409641, 491327, 584661, 690701, 810551, 945361, 1096327, 1264691, 1451741, 1658811, 1887281, 2138577, 2414171
Offset: 1
Keywords
Examples
Some solutions for n=4: -4 -3 -4 -4 -3 -3 -3 -3 -3 -4 -4 -4 -4 -4 -4 -1 -1 2 3 2 0 2 1 -1 4 2 0 -1 4 0 0 0 4 -2 2 -4 -3 2 2 2 0 0 0 4 -3 2 -1 1 -2 3 0 3 3 -1 -2 0 1 -2 2 1 4 1 2 -1 3 0 -1 3 3 0 2 2 -2 4 2 0 -1 1 3 1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..210
Crossrefs
Cf. A208597.
Formula
Empirical: a(n) = (23/12)*n^4 + (23/6)*n^3 + (37/12)*n^2 + (7/6)*n + 1.
Conjectures from Colin Barker, Mar 07 2018: (Start)
G.f.: x*(11 + 22*x + 16*x^2 - 4*x^3 + x^4) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>5.
(End)
Comments