A208602 Number of n-bead necklaces labeled with numbers -1..1 not allowing reversal, with sum zero.
1, 2, 3, 6, 11, 26, 57, 142, 351, 902, 2333, 6166, 16381, 44046, 119183, 324862, 890291, 2453126, 6789309, 18869426, 52635789, 147325510, 413618615, 1164517198, 3287073461, 9300516890, 26372968983, 74937177538, 213333642443, 608400919106, 1737954608281
Offset: 1
Keywords
Examples
All solutions for n=5: .-1...-1...-1...-1...-1...-1...-1...-1....0...-1...-1 .-1....1....0...-1....0....0....0....0....0....1...-1 ..1...-1....0....1....1...-1....1....0....0....0....0 ..1....1....1....0...-1....1....0....0....0....0....1 ..0....0....0....1....1....1....0....1....0....0....1
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Column 1 of A208597.
Programs
-
Mathematica
comps[r_, m_, k_] := Sum[(-1)^i*Binomial[r - 1 - i*m, k - 1]*Binomial[k, i], {i, 0, Floor[(r - k)/m]}]; a[n_Integer, k_] := DivisorSum[n, EulerPhi[n/#] comps[#*(k + 1), 2 k + 1, #] &]/n; a[n_] = a[n, 1]; Array[a, 31] (* Jean-François Alcover, Nov 01 2017, after Andrew Howroyd *)
Formula
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A002426(d). - Andrew Howroyd, Mar 02 2017