A185148
Number of rectangular arrangements of [1,3n] in 3 increasing sequences of size n and n monotonic sequences of size 3.
Original entry on oeis.org
1, 6, 53, 587, 7572, 109027, 1705249, 28440320, 499208817, 9134237407, 172976239886, 3371587949969, 67351686970929, 1374179898145980, 28557595591148315, 603118526483125869, 12920388129877471030, 280324904918707937001, 6151595155000424589327, 136384555249451824930126
Offset: 1
For n = 2 the a(2) = 6 arrangements are:
+---+ +---+ +---+ +---+ +---+ +---+
|1 4| |1 6| |1 3| |1 3| |1 2| |1 2|
|2 5| |2 5| |2 5| |2 4| |3 5| |3 4|
|3 6| |3 4| |4 6| |5 6| |4 6| |5 6|
+---+ +---+ +---+ +---+ +---+ +---+
Only the second of these arrangements is not counted by A005789(2).
-
b:= proc(x, y, z) option remember;
`if`(x=z, `if`(x=0, 1, 2*b(x-1, y, z)), `if`(x>0, b(x-1, y, z), 0)+
`if`(y>x, b(x, y-1, z), 0)+ `if`(z>y, b(x, y, z-1), 0))
end:
a:= n-> b(n-1, n$2):
seq(a(n), n=1..30); # Alois P. Heinz, Feb 29 2012
-
b[x_, y_, z_] := b[x, y, z] = If[x == z, If[x == 0, 1, 2*b[x - 1, y, z]], If[x > 0, b[x - 1, y, z], 0] + If[y > x, b[x, y - 1, z], 0] + If[z > y, b[x, y, z - 1], 0]];
a[n_] := b[n - 1, n, n];
Table[a[n], {n, 1, 30}] (* Jean-François Alcover, Nov 12 2017, after Alois P. Heinz *)
A208616
Number of Young tableaux with 3 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
Original entry on oeis.org
1, 1, 10, 53, 491, 6091, 87781, 1386529, 23374495, 414325055, 7646034683, 145862292213, 2861143072425, 57468095412921, 1178095930854841, 24584089994286121, 521086299342539671, 11198784502153759831, 243661974373753909051, 5360563436205104422681
Offset: 0
-
a:= proc(n) option remember; `if`(n<5, [1, 1, 10, 53, 491][n+1],
((116013096898*n^6 -1106227006064*n^5 +3651730072724*n^4
-5019246600372*n^3 +2923780805838*n^2 -701199942904*n) *a(n-1)
+(-429126244301*n^6 +4283495440027*n^5 -14793057372915*n^4
+19089754215809*n^3 -168467698444*n^2 -17547244920336*n
+9564646580160) *a(n-2) +(24700698282*n^6 +2323122442728*n^5
-31157649402714*n^4 +153639646198428*n^3 -363480023453028*n^2
+415894667210784*n -184360926114960) *a(n-3) +(292122384552*n^6
-5522876986500*n^5 +42303228071580*n^4 -167574646102140*n^3
+360649174254588*n^2 -397826818736400*n +174796279534800) *a(n-4))/
(n*(3709935431*n^5 -22486109809*n^4 +4251368675*n^3 +135507711725*n^2
-75536091046*n -180596388856)))
end:
seq(a(n), n=0..30);
-
b[nn__] := b[nn] = If[(lg = Length[{nn}]) < 2, 1, If[First[{nn}] == Last[{nn}], If[First[{nn}] == 0, 1, 2*b[First[{nn}]-1, Sequence @@ Rest[{nn}]]], If[First[{nn}] > 0, b[First[{nn}] - 1, Sequence @@ Rest[{nn}]], 0] + Sum[If[{nn}[[j]] > {nn}[[j-1]], b[Sequence @@ Table[ {nn}[[i]] - If[i == j, 1, 0], {i, 1, lg}]], 0], {j, 2, lg}]]];
a[n_] := If[n == 0, 1, b[2, Sequence @@ Table[3, {n-1}]]];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 29 2017, after Alois P. Heinz (cf. A208615) *)
A208624
Number of Young tableaux with n 4-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
Original entry on oeis.org
1, 1, 15, 491, 25187, 1725819, 144558247, 14029729645, 1523926182363, 180929760551225, 23086562828397479, 3126799551978895629, 445266632168280620515, 66178991463387525289801, 10206120232877820185701707, 1625518539321873371313790283
Offset: 0
A208631
Number of Young tableaux with n n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
Original entry on oeis.org
1, 1, 3, 53, 25187, 705002611, 1672481205752413, 475092942773985252468181, 22081439406257212482754663652213531, 220381419513554767061883905294847700173775763891, 599868749018773480515945947095662848011697924400242771204050409
Offset: 0
A208729
Number of Young tableaux with i k-length rows with i,k>=0, i+k=n, increasing entries down the columns and monotonic entries along the rows (first row increasing).
Original entry on oeis.org
1, 2, 3, 4, 7, 20, 107, 1251, 39449, 3601484, 993083163, 822645013440, 2233613397459767, 19448649149110190799, 611288282025228989179209, 65375294476542363327381312458, 27613527789685567969428106708416272, 41649724056091694466822995563486395949185
Offset: 0
A208617
Number of Young tableaux with 4 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
Original entry on oeis.org
1, 1, 35, 587, 25187, 1676707, 140422657, 13675362559, 1489926719139, 177296325559211, 22661600612752505, 3073259866183533755, 438091469007903238421, 65166105272787401522141, 10056663348255976399237441, 1602608180008201242503733271
Offset: 0
A208618
Number of Young tableaux with 5 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
Original entry on oeis.org
1, 1, 126, 7572, 1725819, 705002611, 396803649991, 278635710716650, 231474950997766763, 219738417947792525211, 232553597317851557785623, 269396684883944249352055973, 336839101974197524267892335361, 449620757900366812848744648452561
Offset: 0
A208619
Number of Young tableaux with 6 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
Original entry on oeis.org
1, 1, 462, 109027, 144558247, 398084427253, 1672481205752413, 9490918987253894191, 67868136936393109678363, 583693245266271046705306483, 5838544884938502473966453328313, 66244125517281822956796820132971163, 836288765056123179126895804194418164733
Offset: 0
A208620
Number of Young tableaux with 7 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
Original entry on oeis.org
1, 1, 1716, 1705249, 14029729645, 279481714446151, 9493821912766657291, 475092942773985252468181, 32103240681864904236146331299, 2760173043757661872972723537937635, 289232902027154515366683463668541370431, 35764586048631587795405572631302247852797701
Offset: 0
A208621
Number of Young tableaux with 8 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
Original entry on oeis.org
1, 1, 6435, 28440320, 1523926182363, 232075055225078521, 67887185669916054862201, 32104063492616280061833179530, 22081439406257212482754663652213531, 20535540740510211632088991774438342144131, 24486820402563168156475227361324722817780058649
Offset: 0
Showing 1-10 of 18 results.
Comments