A208616 Number of Young tableaux with 3 n-length rows, increasing entries down the columns and monotonic entries along the rows (first row increasing).
1, 1, 10, 53, 491, 6091, 87781, 1386529, 23374495, 414325055, 7646034683, 145862292213, 2861143072425, 57468095412921, 1178095930854841, 24584089994286121, 521086299342539671, 11198784502153759831, 243661974373753909051, 5360563436205104422681
Offset: 0
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..706
Crossrefs
Row n=3 of A208615.
Programs
-
Maple
a:= proc(n) option remember; `if`(n<5, [1, 1, 10, 53, 491][n+1], ((116013096898*n^6 -1106227006064*n^5 +3651730072724*n^4 -5019246600372*n^3 +2923780805838*n^2 -701199942904*n) *a(n-1) +(-429126244301*n^6 +4283495440027*n^5 -14793057372915*n^4 +19089754215809*n^3 -168467698444*n^2 -17547244920336*n +9564646580160) *a(n-2) +(24700698282*n^6 +2323122442728*n^5 -31157649402714*n^4 +153639646198428*n^3 -363480023453028*n^2 +415894667210784*n -184360926114960) *a(n-3) +(292122384552*n^6 -5522876986500*n^5 +42303228071580*n^4 -167574646102140*n^3 +360649174254588*n^2 -397826818736400*n +174796279534800) *a(n-4))/ (n*(3709935431*n^5 -22486109809*n^4 +4251368675*n^3 +135507711725*n^2 -75536091046*n -180596388856))) end: seq(a(n), n=0..30);
-
Mathematica
b[nn__] := b[nn] = If[(lg = Length[{nn}]) < 2, 1, If[First[{nn}] == Last[{nn}], If[First[{nn}] == 0, 1, 2*b[First[{nn}]-1, Sequence @@ Rest[{nn}]]], If[First[{nn}] > 0, b[First[{nn}] - 1, Sequence @@ Rest[{nn}]], 0] + Sum[If[{nn}[[j]] > {nn}[[j-1]], b[Sequence @@ Table[ {nn}[[i]] - If[i == j, 1, 0], {i, 1, lg}]], 0], {j, 2, lg}]]]; a[n_] := If[n == 0, 1, b[2, Sequence @@ Table[3, {n-1}]]]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Mar 29 2017, after Alois P. Heinz (cf. A208615) *)
Formula
a(n) ~ 3^(3*n+1/2) / (Pi*n^4). - Vaclav Kotesovec, Jul 16 2014
Comments