A208659 Triangle of coefficients of polynomials v(n,x) jointly generated with A185045; see the Formula section.
1, 2, 2, 2, 6, 4, 2, 10, 16, 8, 2, 14, 36, 40, 16, 2, 18, 64, 112, 96, 32, 2, 22, 100, 240, 320, 224, 64, 2, 26, 144, 440, 800, 864, 512, 128, 2, 30, 196, 728, 1680, 2464, 2240, 1152, 256, 2, 34, 256, 1120, 3136, 5824, 7168, 5632, 2560, 512, 2, 38, 324
Offset: 1
Examples
First five rows: 1; 2, 2; 2, 6, 4; 2, 10, 16, 8; 2, 14, 36, 40, 16; First five polynomials v(n,x): 1 2 + 2x = 2*(1+x) 2 + 6x + 4x^2 = 2*(1+x)*(1+2x) 2 + 10x + 16x^2 + 8x^3 = 2*(1+x)*(1+2x)^2 2 + 14x + 36x^2 + 40x^3 + 16x^4 = 2*(1+x)*(1+2x)^3
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A185045 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208659 *) (* Using the function RiordanSquare defined in A321620 we also have: *) A208659 = RiordanSquare[(1 + x)/(1 - x), 16] // Flatten (* Gerry Martens, Oct 16 2022 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = u(n-1,x) + 2x*v(n-1,x) + 1,
where u(1,x)=1, v(1,x)=1.
As triangle T(n,k) with 0 <= k <= n: T(n,k) = A029653(n,k)*2^k. - Philippe Deléham, Mar 04 2012
Sum_{k=0..n} T(n,k)*x^k = 2*(1+x)*(1+2x)^(n-2) for n > 1. - Philippe Deléham, Mar 05 2012
Comments