A185045 Triangle of coefficients of polynomials u(n,x) jointly generated with A208659; see the Formula section.
1, 1, 2, 1, 6, 4, 1, 10, 16, 8, 1, 14, 36, 40, 16, 1, 18, 64, 112, 96, 32, 1, 22, 100, 240, 320, 224, 64, 1, 26, 144, 440, 800, 864, 512, 128, 1, 30, 196, 728, 1680, 2464, 2240, 1152, 256, 1, 34, 256, 1120, 3136, 5824, 7168, 5632, 2560, 512, 1, 38, 324
Offset: 1
Examples
First five rows: 1 1...2 1...6...4 1...10...16...8 1...14...36...40...16 First five polynomials u(n,x): 1 1 + 2x 1 + 6x + 4x^2 1 + 10x + 16x^2 + 8x^3 1 + 14x + 36x^2 + 40x^3 + 16x^4
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x] + 1; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A185045 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208659 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=u(n-1,x)+2x*v(n-1,x)+1,
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + 2*T(n-1,k-1) - T(n-2,k) - 2*T(n-2,k-1), T(1,0) = T(2,0) = T(3,0) = 1, T(2,1) = 2, T(3,1) = 6, T(3,2) = 4, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 19 2012
Comments