A208672 a(n) = floor[1/(1-f(n))], where f(n) is the least nonnegative number such that f(n)^n = cos(f(n)).
1, 3, 5, 7, 9, 10, 12, 14, 15, 17, 19, 20, 22, 23, 25, 27, 28, 30, 32, 33, 35, 37, 38, 40, 41, 43, 45, 46, 48, 50, 51, 53, 54, 56, 58, 59, 61, 63, 64, 66, 67, 69, 71, 72, 74, 76, 77, 79, 80, 82, 84, 85, 87, 89, 90, 92
Offset: 0
Keywords
Examples
For n=4, the only positive solution to x^4=cos(x) is x=0.890553, so a(4)=floor(1/(1-.890553)) = floor(9.13682) = 9, so a(4)=9.
Links
- Charles R Greathouse IV, Table of n, a(n) for n = 0..10000
- Eric Weisstein's World of Mathematics, Dottie Number
- Eric Weisstein's World of Mathematics, Cosine
- Eric Weisstein's World of Mathematics, Fixed Point
Programs
-
Mathematica
f[n_] := 1/(1 - FindRoot[x^n == Cos[x], {x, 0, 1}, WorkingPrecision -> 1000][[1,2]]); Table[Floor[f[n]], {n, 0, 100}]
-
PARI
a(n)=1\(1-solve(x=0,1,x^n-cos(x))) \\ Charles R Greathouse IV, Mar 04 2012
Comments