A208723 Number of 2n-bead necklaces labeled with numbers 1..4 not allowing reversal, with neighbors differing by exactly 1.
3, 5, 8, 15, 27, 60, 123, 285, 648, 1529, 3603, 8680, 20883, 50825, 124056, 304575, 750123, 1855100, 4600203, 11442087, 28527448, 71292605, 178526883, 447919420, 1125750147, 2833906685, 7144450568, 18036423975, 45591631803, 115381823348
Offset: 1
Keywords
Examples
All solutions for n=4: ..1....1....3....2....1....2....2....2....2....1....1....1....1....1....1 ..2....2....4....3....2....3....3....3....3....2....2....2....2....2....2 ..1....3....3....2....3....2....4....4....2....3....1....1....3....3....1 ..2....4....4....3....2....3....3....3....3....2....2....2....4....2....2 ..3....3....3....2....1....2....4....2....4....3....1....3....3....3....1 ..2....4....4....3....2....3....3....3....3....4....2....4....2....2....2 ..3....3....3....2....3....4....4....4....4....3....1....3....3....3....3 ..2....2....4....3....2....3....3....3....3....2....2....2....2....2....2
Links
- Andrew Howroyd, Table of n, a(n) for n = 1..100
Crossrefs
Column 4 of A208727.
Formula
a(n) = (1/n) * Sum_{d | n} totient(n/d) * A005248(d). - Andrew Howroyd, Mar 18 2017
Extensions
a(26)-a(30) from Andrew Howroyd, Mar 18 2017