cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A208730 Sequence related to Kashaev's invariant for the (5,2)-torus knot.

Original entry on oeis.org

1, 2, 10, 104, 1870, 51632, 2027470, 107354144, 7370645950, 636754087472, 67591284235630, 8647294709864384, 1312197219579059230, 233025643830843282512
Offset: 0

Views

Author

Peter Bala, Mar 01 2012

Keywords

Comments

This is sequence b_n(5) in Table 2 of Hikami 2003.

Crossrefs

Formula

Define F(q) := sum {m,n >= 0} (q^(-m*n)*product {i = 1.. m+n} (1-q^i)).
E.g.f.: F(exp(-t)) = 1 + 2*t + 10*t^2! + 104*t^3/3! + .... For the expansion of F(1-q) see A208733. F(q) also appears in a conjectural e.g.f. for A208679.
a(n) = (9/40)^n*sum {k = 0..n} binomial(n,k)*A208679(k+1)/9^k.
Conjectural S-fraction for the o.g.f.: 1/(1-2*x/(1-3*x/(1-9*x/(1-11*x/(1-...-1/2*n*(5*n-1)*x/(1-1/2*n*(5*n+1)*x/(1- ....

A208731 Sequence related to Kashaev's invariant for the (7,2)-torus knot.

Original entry on oeis.org

1, 3, 21, 303, 7581, 291903, 16004541, 11842303, 113649275901, 13729560793503, 2038432934681661, 364819653173167503, 77453921498088781821, 19245815560568454066303, 5532998260944453966936381
Offset: 0

Views

Author

Peter Bala, Mar 01 2012

Keywords

Comments

This is sequence b_n(7) in Table 2 of Hikami 2003.

Crossrefs

Formula

a(n) = (25/56)^n*sum {k = 0..n} binomial(n,k)*A208680(k+1)/25^k.
Conjectural S-fraction for the o.g.f.: 1/(1-3*x/(1-4*x/(1-13*x/(1-15*x/(1-...-1/2*n*(7*n-1)*x/(1-1/2*n*(7*n+1)*x/(1- ....

A208735 Sequence related to Kashaev's invariant for the (9,2)-torus knot.

Original entry on oeis.org

1, 4, 20, 130, 1070, 10738, 127316, 1741705, 27003335, 467906045, 8961068424, 187959552998, 4285257122545, 105513858706830, 2790444044794960
Offset: 0

Views

Author

Peter Bala, Mar 02 2012

Keywords

Comments

This is sequence a_n(9) in Table 3 of Hikami 2003.

Crossrefs

Formula

For n >=1, a(n) = 1/n!*sum {k = 1..n} |Stirling1(n,k)|*A208732(k).
Showing 1-3 of 3 results.