cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208742 Number of subsets of the set {1,2,...,n} which do not contain two elements whose difference is 5.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 48, 72, 108, 162, 243, 405, 675, 1125, 1875, 3125, 5000, 8000, 12800, 20480, 32768, 53248, 86528, 140608, 228488, 371293, 599781, 968877, 1565109, 2528253, 4084101, 6612354, 10705716, 17333064, 28063056, 45435424, 73498480, 118894600
Offset: 0

Views

Author

David Nacin, Mar 01 2012

Keywords

Examples

			If n=6 then we must count all subsets not containing both 1 and 6.  There are 2^4 subsets containing 1 and 6, giving us 2^6 - 2^4 = 48.  Thus a(6) = 48.
		

References

  • M. El-Mikkawy, T. Sogabe, A new family of k-Fibonacci numbers, Appl. Math. Comput. 215 (2010) 4456-4461 doi:10.1016/j.amc.2009.12.069, Table 1 k=5.

Crossrefs

Programs

  • Mathematica
    Table[Fibonacci[Floor[n/5] + 3]^Mod[n, 5] * Fibonacci[Floor[n/5] + 2]^(5 - Mod[n, 5]), {n, 1, 40}]
    LinearRecurrence[{1, 1, 0, 0, -3, 3, 3, 0, 0, 6, -6, -6, 0, 0, 3, -3, -3, 0, 0, -1, 1, 1}, {2, 4, 8, 16, 32, 48, 72, 108, 162, 243, 405, 675, 1125, 1875, 3125, 5000, 8000, 12800, 20480, 32768, 53248, 86528, 140608, 228488, 371293, 599781, 968877}, 80]
  • PARI
    a(n)=fibonacci(n\5+3)^(n%5)*fibonacci(n\5+2)^(5-n%5) \\ Charles R Greathouse IV, Mar 05 2012

Formula

a(n) = F(floor(n/5) + 3)^(n mod 5)*F(floor(n/5) + 2)^(5 - (n mod 5)) where F(n) is the n-th Fibonacci number.
a(n) = a(n-1) + a(n-2) - 3*a(n-5) + 3*a(n-6) + 3*a(n-7) + 6*a(n-10) - 6*a(n-11) - 6*a(n-12) + 3*a(n-15) - 3*a(n-16) - 3*a(n-17) - a(n-20) + a(n-21) + a(n-22).
G.f.: 1-x*(x^21 +2*x^20 +x^19 +x^18 +x^17 -2*x^16 -6*x^15 -4*x^14 -3*x^13 -3*x^12 -9*x^11 -12*x^10 -3*x^9 -6*x^8 -6*x^7 -2*x^6 +6*x^5 +8*x^4 +4*x^3 +2*x^2 +2*x +2) / ((x^2 +x -1) * (x^10 -4*x^5 -1) * (x^10 +x^5 -1)). - Colin Barker, Jun 02 2013

Extensions

a(0)=1 prepended by Alois P. Heinz, Sep 17 2024