A208744 Triangle relating to ordered Bell numbers, A000670.
1, 1, 2, 1, 3, 9, 1, 4, 18, 52, 1, 5, 30, 130, 375, 1, 6, 45, 260, 1125, 3246, 1, 7, 63, 455, 2625, 11361, 32781, 1, 8, 84, 728, 5250, 30296, 131124, 378344, 1, 9, 108, 1092, 9450, 68166, 393372, 1702548, 4912515, 1, 10, 135, 1560, 15750, 136332, 983430, 5675160, 24562575, 70872610
Offset: 1
Examples
Row 4 (nonzero terms) = (1, 4, 18, 52) = termwise product of (1, 4, 6, 4) and (1, 1, 3, 13). First few rows of the triangle: 1; 1, 2; 1, 3, 9; 1, 4, 18, 52; 1, 5, 30, 130, 375; 1, 6, 45, 260, 1125, 3246; 1, 7, 63, 455, 2625, 11361, 32781; 1, 8, 84, 728, 5250, 30296, 131124, 378344; ...
Programs
-
Mathematica
Fubini[n_, r_] := Sum[k!*Sum[(-1)^(i + k + r)*(i + r)^(n - r)/(i!*(k - i - r)!), {i, 0, k - r}], {k, r, n}]; Fubini[0, 1] = 1; a[n_, k_] := Binomial[n, k] Fubini[k, 1]; Table[a[n, k], {n, 1, 10}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Mar 30 2016 *)
Formula
E.g.f. (exp(x) - 1)/(2 - exp(x*t)) = x + (1 + 2*t)*x^2/2! + (1 + 3*t + 9*t^2)*x^3/3! + .... Cf. A154921. - Peter Bala, Aug 31 2016
Extensions
a(36) corrected by Jean-François Alcover, Mar 30 2016
Comments