A208751 Triangle of coefficients of polynomials u(n,x) jointly generated with A208752; see the Formula section.
1, 1, 2, 1, 6, 2, 1, 12, 12, 2, 1, 20, 40, 18, 2, 1, 30, 100, 86, 24, 2, 1, 42, 210, 294, 150, 30, 2, 1, 56, 392, 812, 656, 232, 36, 2, 1, 72, 672, 1932, 2268, 1240, 332, 42, 2, 1, 90, 1080, 4116, 6624, 5172, 2100, 450, 48, 2, 1, 110, 1650, 8052, 17028, 17996
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 6, 2; 1, 12, 12, 2; 1, 20, 40, 18, 2; First five polynomials u(n,x): 1 1 + 2x 1 + 6x + 2x^2 1 + 12x + 12x^2 + 2x^3 1 + 20x + 40x^2 + 18x^3 + 2x^4 From _Philippe Deléham_, Mar 17 2012: (Start) (1, 0, 1, 0, 0, ...) DELTA (0, 2, -1, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 6, 2, 0; 1, 12, 12, 2, 0; 1, 20, 40, 18, 2, 0; 1, 30, 100, 86, 24, 2, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208751 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208752 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = (x+1)*u(n-1,x) + (x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 17 2012: (Start)
As DELTA-triangle with 0 <= k <= n:
G.f.: (1-x-y*x)/(1-2*x-y*x+x^2-y*x^2).
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-1), T(0,0) = T(1,0) = T(2,0) = 1, T(1,1) = T(2,2) = 0, T(2,1) = 2 and T(n,k) = 0 if k < 0 or if k > n. (End)
Comments