cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208752 Triangle of coefficients of polynomials v(n,x) jointly generated with A208751; see the Formula section.

Original entry on oeis.org

1, 2, 1, 3, 5, 1, 4, 14, 8, 1, 5, 30, 34, 11, 1, 6, 55, 104, 63, 14, 1, 7, 91, 259, 253, 101, 17, 1, 8, 140, 560, 806, 504, 148, 20, 1, 9, 204, 1092, 2178, 1966, 884, 204, 23, 1, 10, 285, 1968, 5202, 6412, 4090, 1420, 269, 26, 1, 11, 385, 3333, 11286, 18238
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (0, 2, -1/2, 1/2, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 1/2, -1/2, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 17 2012
Setting v(0,x) = 0, the sequence of polynomials {v(n,x) : n >= 0} satisfies the second-order recurrence v(n,x) = (x + 2)*v(n-1,x) + (x - 1)*v(n-2,x) with v(0,x) = 0 and v(1,x) = 1. Then by Norfleet, this sequence of polynomials is a strong divisibility sequence of polynomials in the ring Z[x], that is gcd(v(n,x), v(m,x)) = v(gcd(n,m),x). In particular, if n divides m then v(n,x) divides v(m,x) in Z[x]. - Peter Bala, Feb 07 2024

Examples

			First five rows:
  1
  2   1
  3   5    1
  4   14   8    1
  5   30   34   11   1
First five polynomials u(n,x) - see A208751:
  1
  1 + 2*x
  1 + 6*x + 2*x^2
  1 + 12*x + 12*x^2 + 2*x^3
  1 + 20*x + 40*x^2 + 18*x^3 + 2*x^4
(0, 2, -1/2, 1/2, 0, 0, ...) DELTA (1, 0, 1/2, -1/2, 0, 0, ...) begins:
  1
  0, 1
  0, 2, 1
  0, 3, 5, 1
  0, 4, 14, 8, 1
  0, 5, 30, 34, 11, 1. - _Philippe Deléham_, Mar 17 2012
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208751 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208752 *)

Formula

u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-1), T(1,0) = 1, T(2,0) = 2, T(2,1) = 1, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 17 2012
G.f.: -x*y/(-1+2*x-x^2+x^2*y+x*y). - R. J. Mathar, Aug 12 2015