A208752 Triangle of coefficients of polynomials v(n,x) jointly generated with A208751; see the Formula section.
1, 2, 1, 3, 5, 1, 4, 14, 8, 1, 5, 30, 34, 11, 1, 6, 55, 104, 63, 14, 1, 7, 91, 259, 253, 101, 17, 1, 8, 140, 560, 806, 504, 148, 20, 1, 9, 204, 1092, 2178, 1966, 884, 204, 23, 1, 10, 285, 1968, 5202, 6412, 4090, 1420, 269, 26, 1, 11, 385, 3333, 11286, 18238
Offset: 1
Examples
First five rows: 1 2 1 3 5 1 4 14 8 1 5 30 34 11 1 First five polynomials u(n,x) - see A208751: 1 1 + 2*x 1 + 6*x + 2*x^2 1 + 12*x + 12*x^2 + 2*x^3 1 + 20*x + 40*x^2 + 18*x^3 + 2*x^4 (0, 2, -1/2, 1/2, 0, 0, ...) DELTA (1, 0, 1/2, -1/2, 0, 0, ...) begins: 1 0, 1 0, 2, 1 0, 3, 5, 1 0, 4, 14, 8, 1 0, 5, 30, 34, 11, 1. - _Philippe Deléham_, Mar 17 2012
Links
- M. Norfleet, Characterization of second-order strong divisibility sequences of polynomials, The Fibonacci Quarterly, 43(2) (2005), 166-169.
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := u[n - 1, x] + (x + 1) v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208751 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208752 *)
Formula
u(n,x)=u(n-1,x)+2x*v(n-1,x),
v(n,x)=u(n-1,x)+(x+1)*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
T(n,k) = 2*T(n-1,k) + T(n-1,k-1) - T(n-2,k) + T(n-2,k-1), T(1,0) = 1, T(2,0) = 2, T(2,1) = 1, T(n,k) = 0 if k<0 or if k>=n. - Philippe Deléham, Mar 17 2012
G.f.: -x*y/(-1+2*x-x^2+x^2*y+x*y). - R. J. Mathar, Aug 12 2015
Comments