cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A208755 Triangle of coefficients of polynomials u(n,x) jointly generated with A208756; see the Formula section.

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 6, 8, 1, 2, 8, 14, 16, 1, 2, 10, 20, 34, 32, 1, 2, 12, 26, 56, 78, 64, 1, 2, 14, 32, 82, 140, 178, 128, 1, 2, 16, 38, 112, 218, 352, 398, 256, 1, 2, 18, 44, 146, 312, 594, 852, 882, 512, 1, 2, 20, 50, 184, 422, 912, 1530, 2040, 1934, 1024
Offset: 1

Views

Author

Clark Kimberling, Mar 01 2012

Keywords

Comments

For a discussion and guide to related arrays, see A208510.
Subtriangle of the triangle given by (1, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (0, 2, 0, -1, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - Philippe Deléham, Mar 04 2012

Examples

			First five rows:
  1;
  1, 2;
  1, 2, 4;
  1, 2, 6,  8;
  1, 2, 8, 14, 16;
First five polynomials u(n,x):
  1
  1 + 2x
  1 + 2x + 4x^2
  1 + 2x + 6x^2 +  8x^3
  1 + 2x + 8x^2 + 14x^3 + 16x^4
From _Philippe Deléham_, Mar 04 2012: (Start)
Triangle (1, 0, -1, 1, 0, 0, 0...) DELTA (0, 2, 0, -1, 0, 0, 0, ...) begins:
  1;
  1,  0;
  1,  2,  0;
  1,  2,  4,  0;
  1,  2,  6,  8,  0;
  1,  2,  8, 14, 16,  0;
  1,  2, 10, 20, 34, 32,  0; (End)
		

Crossrefs

Programs

  • Mathematica
    u[1, x_] := 1; v[1, x_] := 1; z = 16;
    u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x];
    v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x];
    Table[Expand[u[n, x]], {n, 1, z/2}]
    Table[Expand[v[n, x]], {n, 1, z/2}]
    cu = Table[CoefficientList[u[n, x], x], {n, 1, z}];
    TableForm[cu]
    Flatten[%]    (* A208755 *)
    Table[Expand[v[n, x]], {n, 1, z}]
    cv = Table[CoefficientList[v[n, x], x], {n, 1, z}];
    TableForm[cv]
    Flatten[%]    (* A208756 *)

Formula

u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 04 2012: (Start)
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + 2*T(n-2,k-2), T(1,0) = 1, T(2,0) = 1, T(2,1) = 1 and T(n,k) = 0 if k < 0 or if k > n. (End)
G.f.: -(1+x*y)*x*y/(-1+x*y-x^2*y+2*x^2*y^2+x). - R. J. Mathar, Aug 11 2015