A208755 Triangle of coefficients of polynomials u(n,x) jointly generated with A208756; see the Formula section.
1, 1, 2, 1, 2, 4, 1, 2, 6, 8, 1, 2, 8, 14, 16, 1, 2, 10, 20, 34, 32, 1, 2, 12, 26, 56, 78, 64, 1, 2, 14, 32, 82, 140, 178, 128, 1, 2, 16, 38, 112, 218, 352, 398, 256, 1, 2, 18, 44, 146, 312, 594, 852, 882, 512, 1, 2, 20, 50, 184, 422, 912, 1530, 2040, 1934, 1024
Offset: 1
Examples
First five rows: 1; 1, 2; 1, 2, 4; 1, 2, 6, 8; 1, 2, 8, 14, 16; First five polynomials u(n,x): 1 1 + 2x 1 + 2x + 4x^2 1 + 2x + 6x^2 + 8x^3 1 + 2x + 8x^2 + 14x^3 + 16x^4 From _Philippe Deléham_, Mar 04 2012: (Start) Triangle (1, 0, -1, 1, 0, 0, 0...) DELTA (0, 2, 0, -1, 0, 0, 0, ...) begins: 1; 1, 0; 1, 2, 0; 1, 2, 4, 0; 1, 2, 6, 8, 0; 1, 2, 8, 14, 16, 0; 1, 2, 10, 20, 34, 32, 0; (End)
Programs
-
Mathematica
u[1, x_] := 1; v[1, x_] := 1; z = 16; u[n_, x_] := u[n - 1, x] + 2 x*v[n - 1, x]; v[n_, x_] := x*u[n - 1, x] + x*v[n - 1, x]; Table[Expand[u[n, x]], {n, 1, z/2}] Table[Expand[v[n, x]], {n, 1, z/2}] cu = Table[CoefficientList[u[n, x], x], {n, 1, z}]; TableForm[cu] Flatten[%] (* A208755 *) Table[Expand[v[n, x]], {n, 1, z}] cv = Table[CoefficientList[v[n, x], x], {n, 1, z}]; TableForm[cv] Flatten[%] (* A208756 *)
Formula
u(n,x) = u(n-1,x) + 2x*v(n-1,x),
v(n,x) = x*u(n-1,x) + x*v(n-1,x),
where u(1,x)=1, v(1,x)=1.
From Philippe Deléham, Mar 04 2012: (Start)
T(n,k) = T(n-1,k) + T(n-1,k-1) - T(n-2,k-1) + 2*T(n-2,k-2), T(1,0) = 1, T(2,0) = 1, T(2,1) = 1 and T(n,k) = 0 if k < 0 or if k > n. (End)
G.f.: -(1+x*y)*x*y/(-1+x*y-x^2*y+2*x^2*y^2+x). - R. J. Mathar, Aug 11 2015
Comments